
Testing in
Production

A RATIONAL GUIDE TO

by Rob Zuber

2A Rational Guide to Testing in Production

In the increasingly complex world of risk management in software
delivery, testing in production has been promoted from its status as
a joke to a key tool in the validation toolbox. Therefore, we have an
obligation to our businesses, as well as the well-being of our users, to
look at what it would mean, and what it would cost, to do it well.

CircleCI CTO Rob Zuber, will walk through what thorough risk
assessment looks like in today’s software landscape, and provide
frameworks and tools to help companies of all sizes and industries
make prudent and well-reasoned testing choices.

3A Rational Guide to Testing in Production

Change has become a massive
supply chain challenge that every
company is now dealing with.

Over the last 10 years, the tech industry has
adopted new testing methodologies to help
address the ever-growing sources of change.
As our choices for how to evaluate the
correctness of our software in both pre-
production environments and beyond have
increased, we need a better way to assess how
each testing methodology fits into the landscape
of cost and risk. This type of evaluation is
especially critical when we consider testing in
production. The combination of ever-increasing
software complexity and vastly improved
operational tooling has led to a world where
production validation is the right business
decision in certain cases.

Testing in production can be a confusing term,
because it’s often associated with practices that

don’t look like traditional testing. For that reason,
we think of testing in production as an extension
of the spectrum of validation. Production
validation, when used in conjunction with other
testing methodologies, helps teams mitigate
risk as trends like increased use of third-party
services and larger and larger datasets make
it more difficult to fully validate code before
it hits production. That’s where the idea of
continuous validation comes in. It’s important
to validate that all changes and dependencies
that developers rely on are working, and that
the ground isn’t changing under their feet.
Thinking about testing in production as another
component of your validation strategy (rather
than a replacement for it) helps teams bolster
their confidence and increase speed to market.
There are, of course, costs and risks associated
with testing in production, and I’ll explore when
this strategy is most useful and how to go about
it safely.

4A Rational Guide to Testing in Production

COST & RISK Many people taking roles as software engineers
today are trained in computer science. The growth
from the study of computer science to the practice
of engineering is about taking that theoretical
knowledge and learning how to apply it to a
constrained world. One of the major considerations
of real-world projects that goes beyond the
theoretical, is thinking about the costs and risks
that your projects pose to your business.

“ Over time we realized that these larger
and larger planning efforts were actually
increasing risk, not reducing it.”

5A Rational Guide to Testing in Production

A concrete comparison
While a common practice in engineering is
performing a cost comparison across projects to
find the greatest return on time and resources, a
second common comparison is to look at possible
adjustments to the cost for the same return. In an
example taken from civil engineering, the concrete
used in the pillars of highrise buildings is about five
times stronger than concrete used in a sidewalk, and
for good reason. Not only is the weight to bear higher
on the highrise pillar, but the impact of a failure in
that pillar is orders of magnitude higher than the
result of a cracking sidewalk.

More certainty in the output requires higher cost.

On the surface, this example appears to be just about
the cost of materials, but going one level deeper, the
cost of producing higher-strength concrete reflects
the additional work that goes into it: stricter gates
on the quality of the source materials, more waste,
and higher levels of testing to ensure that standards
are met.

It turns out that the increasing cost associated with
reducing defects in construction materials has more
than a few first-order parallels to software.

What causes risk in software delivery?
For the purposes of this discussion, software risk is
limited to the risk of delivering software to end users
that does not behave as they would expect. The
primary driver of this type of risk comes from changes
made to the software itself.

In the early days of software engineering, we had a
fundamentally broken view of risk, which was that
with enough effort, we could eliminate it. Or, if not
eliminate it altogether, then minimize it through ever-
increasing investments in upfront analysis, which we
expected would pay dividends in risk mitigation.

Over time we realized that these larger and larger
planning efforts were actually increasing risk, not
reducing it. That is because as preparation and
planning increased, delivering to users – whether as

6A Rational Guide to Testing in Production

a SaaS deploy, App Store submission, or otherwise –
became a climactic event. Each one had more code
and more lead time than the last. This in turn created
a much bigger surface area for possible failures
associated with releases, more risk, and higher costs.

Since every change is a source of risk, conventional
thinking focused on introducing fewer changes and
having each of these changes well-validated with
vetted designs, many sign-offs, and large QA cycles.
However, by increasing batch size, we now know that
we were also ultimately increasing risk. This method
had the added effects of slowing delivery and
increasing the time to resolve issues due to forgotten
context.

Predicting, constraining, and
embracing risk
Eventually, our industry realized that by slicing
changes into the smallest possible increments,
we could reduce the risk associated with any one
change.

Since adopting the model of making more frequent,
smaller changes to a codebase, the industry has
become much better at quickly responding to
surprises and failures. We’ve created TDD, Agile
methodologies, and continuous deployment, which
all help us design for and respond to uncertainties.
Using these methodologies, we’ve been able to
greatly reduce the risk of unforeseen bugs leaking
into production environments where they could
affect end users.

In practice, reducing change into smaller increments
often looks like deploying multiple changes to a
production codebase per day. The tooling that allows
us to do that, such as CI/CD with comprehensive test
coverage, gives us the confidence to move quickly
because we know we will not deploy anything to a
production environment until it’s been tested and
validated. By thoroughly testing code before it ever
reaches production, we’ve been able to maintain the
benefits of more lightweight planning cycles, shorter
feedback loops with realtime user feedback, all with
higher confidence in our code and reduced risk. This
has been a good thing.

https://circleci.com/blog/how-to-test-software-part-ii-tdd-and-bdd/
https://circleci.com/blog/a-brief-history-of-devops-part-ii-agile-development/
https://circleci.com/blog/a-brief-history-of-devops-part-ii-agile-development/
https://circleci.com/blog/continuous-deployment-without-downtime/

7A Rational Guide to Testing in Production

But technology continues to evolve, so while we
were focused on minimizing risk, the problem space
shifted under our feet, and introduced new kinds
of risks that didn’t exist before (we’ll cover these
new developments in depth in the next chapter).
Over the past few years, increasing complexities
in the landscape of software development have
made comprehensive pre-production testing more
complicated and in some cases, prohibitively
difficult or expensive. As such, we’ve seen a rising
enthusiasm for “testing in production” — a term once
used to invoke imagery of disastrous negligence, but
which has shifted to represent intentional practices
of modern software delivery. In some cases, it is the
most practical choice.

Despite the many factors enabling broader adoption
of production validation, it’s equally important, if
not more important, to rationally assess the risk

of any testing decision, applying inputs from your
particular business and risk profile, in order to
ascertain the appropriate testing protocol. Yes, the
world has gotten more complex, but just as in a
decision about concrete quality, software deployment

decisions have real costs and risks to consider. We’ll
always be testing something in production, but our
success is more dependent than ever on having
good frameworks for assessing the risk, the cost of
change, and the potential upside to those choices.

“ But technology continues to evolve, so
while we were focused on minimizing
risk, the problem space shifted under
our feet, and introduced new kinds of
risks that didn’t exist before.”

8A Rational Guide to Testing in Production

The changing world of software
development
As software becomes a competitive differentiator
for more and more companies (not just in the tech
industry but in more traditional verticals like retail,
health, and finance), software teams are optimizing
for faster and faster delivery. A few trends have
appeared alongside these goals:

• Greater use of third-party services and tools

• Microservice architectures

• Larger and larger data sets

While these factors have helped us refine and
optimize our software development, they have also
reduced our ability to be confident in complete
validation within a pre-production environment, so
they’re important to discuss here. Put another way,
the presence of any (or all) of these factors have
increased the cost of achieving the same confidence
in our code before we ship it. Let’s go through them
one by one to see how they can make it more difficult
to thoroughly test your code.

THE RISING COST (AND RISK)
OF PRE-PRODUCTION TESTING

9A Rational Guide to Testing in Production

Greater use of third-party services
and tools
The introduction of more and more third-party
services makes it increasingly difficult to be certain
(or even aware) of all the changes to your codebase.
In a world where we build on larger and larger
frameworks, it’s not uncommon for a small fraction
of your codebase to be originated by your developers
— the rest might be shared services and libraries.
These resources, while efficient for development, are
less predictable than code written by your team, and
in the case of third-party services (such as payment
or analytics platforms), it’s possible for their behavior
to change without any change in your own code.
Therefore, it’s much more difficult to have real insight
into all the changes which may affect your users.

Microservice architectures
Microservices have allowed us to move a great deal
of complexity out of single monolithic pieces of
software. Minimizing a piece of software is great
for a developer tasked with working on it, but that

complexity doesn’t just go away — instead it’s moved
into the interactions between the pieces of software.

Done well, microservices are intended to be
effectively independent. As a developer, I should be
able to manage my service without knowing about
services that depend on it. However, if I wanted to
test my service thoroughly, I would have to consider
these dependencies. For full confidence in the output
of my tests, and the performance of my service in
the real world, I would have to set up a complete
environment (including all the services that are
dependent on mine) to make sure my changes didn’t
break any of them. Doing so would pose a huge cost,
and also undermine my independence and agility to
push changes.

Larger and larger data sets
As an industry, we’ve become obsessed with
data-driven applications. Along with our goal of
collecting as much data as possible to improve
the capabilities of our applications, we’re also

10A Rational Guide to Testing in Production

subjecting ourselves and our systems to processing
these ever larger scales of data. Storage is cheaper,
computers are fast. But with increasingly large data
sets comes the responsibility of managing larger test
data sets as well: with appreciable costs related to
moving them around, storing, and archiving them.
This also affects the cost and feasibility of thorough
pre-production testing. At CircleCI, for example,
we have terabytes of data in our production
environment — it would be an immense undertaking
to inject that into every test run.

There are additional considerations for large data
sets as well. Things that look like they’ll operate
effectively in a CI run can see different results in a
production environment.

For example, cardinality, a measurement of the
amount of uniqueness of data, is something that
people don’t usually plan for. Let’s say I have a
column in my database called “Last Name.” In some
countries, I’ll get huge diversity within that column,
while in others, I might have very little diversity. In
those cases, indexing on last name won’t be a super
fast lookup. Given real data instead of test data,

I might make a different performance decision; for
example, indexing on first name instead of last name.
Some teams try to solve this problem by pulling
production data into their test environment, but
privacy and security concerns lead to anonymization,
resulting in data that *still* doesn’t represent the
real world. Imagining all the edge cases, creating
the appropriate test data sets, and operating on
them would be an immense task. By putting it into
production and using real production data, you can
attempt to minimize the blast radius of mistakes
while seeing if your service will really work.

Each trend in its own right has made it harder to
feel fully confident when performing software
validation in a pre-production environment.
Combined, attempting to itemize the possible
issues is overwhelming. Combating this risk with
increasingly complex test platforms results in an
upward trajectory of cost that eventually becomes
unsustainable. While testing in production brings its
own set of risks, it is another tool in the toolkit that
can be thoughtfully applied to cost-effectively identify
failures and edge cases with real-world data.

11A Rational Guide to Testing in Production

We’ve now looked at several reasons why catching
specific classes of issues in a pre-production
environment has become more complex, and
therefore more costly. It stands to reason that these
costs can and will increase to the point where we

become more willing to take on the risk of finding
some issues in production instead, and subsequently
fixing them as quickly as possible. This is where
testing in production outgrows its history as a meme
and steps in as a viable methodology.

As some classes of bugs or issues are prohibitively
expensive (or impossible) to find via pre-production
testing, and we find ourselves testing in production,
whether we ever wanted to or not, it’s natural to think
about investing some of our energy in limiting blast
radius and speeding up remediation of production
bugs.

And this inflection point — where the cost of pre-
production validation supasses that of in-production
validation — isn’t static; it’s moving. Since the cost
of testing in production is somewhat fixed, and the
cost of thorough pre-production testing is increasing
with the growing complexity of our development
processes, the threshold is something we need to be
dynamically assessing.

THE INFLECTION POINT

“�And�this�inflection�point�—�where�
the cost of pre-production validation
supasses that of in-production
validation�—�isn’t�static;�it’s�moving.”

12A Rational Guide to Testing in Production

In this increasingly complex world of risk management, testing in production
is now a key tool in the toolbox. Let’s look at what it would mean, and what it
would cost, to do it well.

13A Rational Guide to Testing in Production

Measuring the costs of testing in
production
The cost of testing in production is primarily
associated with impact to users. This cost can be
measured across four axes:

• Number of users affected

• Category of users affected

• Severity of the impact

• Duration of the impact

REDUCING THE
COST OF TESTING
IN PRODUCTION

14A Rational Guide to Testing in Production

category of users affected

This refers to different categories
of users you might have on your

system, such as free/trial users, small business vs.
enterprise, or ideally, users who are opted-in to beta
or early release access. The specific groups which
are most costly to affect is a matter of your business,
but knowing which they are and targeting changes
accordingly is a great risk-mitigation strategy.

duration of impact

This is the time during which users
see the effect of a bad change.

severity of the impact

This refers to the gravity of the
impact on a user and should be

focused on the most important pathways a user
follows through the system. For example, at CircleCI,
an issue that keeps a user from building code is
typically much more severe than an issue that
prevents them from changing a build setting.

number of users affected

While this metric is fairly
straightforward, to infer the impact

of a failure from the raw user numbers, you need to
account for the total number of users on your service,
so I advise taking user quantity as a percent. Note:
in order to minimize the number of affected users,
it needs to be possible to serve specific users with
new code vs. old code, using tools like canaries and
feature flags, discussed later.

15A Rational Guide to Testing in Production

Tooling that can reduce costs
As testing in production finds its place, many vendors
and tool providers are releasing tools that support
this approach, helping constrain blast radius and
mitigate risk. Let’s talk about some of these options
and explore the ways in which they might help you
reduce the cost of catching issues in production.
We’ll explore the tools in two categories: monitoring
and deployment/release tools.

monitoring tools
Monitoring is a category of tools, generally referring
to the combination of logs, metrics, and tracing.
There are overlaps in what these tools can support
as well as how you can best apply them in your
environment, but let’s start with the basics.

One more note before we dive in: regardless of
whether you choose to employ testing in production,
you know you need debuggability in your production
environment. By laying the groundwork for
debugging, you’ve already made a huge investment
in monitoring. So in going the last mile to do it

really well, you can get double duty out of these
tools for your production testing as well, and you’ll
be offsetting costs elsewhere. This is a smart
investment.

logs
Logs help reduce the time of impact by assisting in
debugging. While logs have been in use for a long
time, we now have the tools to aggregate them.
However, many logs remain unstructured — they
represent the concerns of the developer at the time
they were written, rather than with the intent to help
someone debug at the time of failure. Anomaly
detection helps by giving us some ability to identify
what matters in logs more quickly. When writing new
log lines, we should invest in structuring, and make
sure we write them in a way that is operation-oriented
before shipping them.

metrics
When we talk about metrics related to monitoring,
we think of the dashboards using stats, and counters
that we emit from our systems, and that allow
developers to identify changes in system behavior

16A Rational Guide to Testing in Production

with little effort. While these are generally more
intentional than logs, they still suffer from being
oriented around what the developer thought would
go wrong instead of what is actually going wrong.
Similar to logs, anomaly detection also helps here,
but to get to real confidence, we have to be confident
in our anomaly detection as well as in our coverage
through metrics. Metrics can often tell you that
something is going wrong, but rarely why, unless you
can quickly correlate the cause and effect. The pure
cost of thorough metrics can be high as you scale,
but since these have invaluable applications beyond
just testing in production, they are well worth the
investment.

tracing
Tracing refers to the tools that are used to capture
and visualize the flow of a request through a
system. While tracing tools are helpful in monoliths
(for the purposes of logging a request through the
codebase), tracing really shines when you’re faced
with a single customer ask that requires requests to

multiple backend services — and possibly multiple
roundtrips to the same service.

Tracing is far less common than logging and
metrics, but as we build more distributed systems,
it’s becoming essential for basic operations. Teams
should start by investing time on tracing, then, they’ll
have the tools to handle more ‘test-in-prod’ scenarios.
The cost of implementing tracing is similar to other
monitoring tools, and like other monitoring tools, it
reduces the duration of impact through enhanced
debugging. It’s worth calling out that all monitoring
tools can also prevent some of the impact caused by
things like scaling, because the tools allow you to see
when your system is reaching its threshold before
usability starts degrading.

17A Rational Guide to Testing in Production

Deploy and release
This group of tools refers to the ways in which users
gain access to new code.

blue/green deploys
Blue/green deploys (sometimes called “red/black”
deploys) are deploys in which a full copy of a system
such as a service or monolith is kept running while
traffic is cut over to a new full deploy of that system.
This allows developers to monitor performance and
cut back immediately if there are any issues. Blue/
green deploys can be complex to set up and tend
to be very system-dependent. While the cost used
to be high in the days of servers, the addition of
elastic compute and the cloud have lowered the cost
significantly. This protocol is only useful if you can
determine the impact of turning them on in real-time
(see monitoring). If so, they can greatly reduce the
duration of impact.

canary deploys
These are deploys of software updates where, rather
than replacing all instances of the codebase (whether
it’s a monolith, a service, or something else), a small

subset of instances are replaced for the purpose of
validating functionality. In some cases, specific traffic
can be routed to those canaries, and the options for
routing are limitless: specific work types, specific
customers, specific geographies, times, etc. The
canary’s behavior is monitored, and when it has both
proven its intended effect and proven not to cause
any unexpected negative effects, the remainder of
the instances are generally replaced as well. The
timeline for this overall deploy is completely open
based on the needs of the business. Like blue/
green deploys, canaries are only useful if you can
determine the impact in real-time of turning them on
(see monitoring). You can increase the value of your
canaries by making it easier and faster to remove
any routing sending traffic to that canary; ideally, it
can even be automated when an error condition is
detected. Canaries will help control the number of
users affected, the category of users affected, and
the duration of the impact.

feature flags
Feature flags are code-level wrappers around
sections of a system that are concerning or high

18A Rational Guide to Testing in Production

risk. Most systems allow configuration to expose
new capabilities to subsets of users, including
by geography, user type, and organization type.
A major benefit of feature flags is that they allow
you to quickly remove buggy code from production
— you just need to turn the flag off. The cost of
implementing feature flags can be low, but tends
to grow over time. They become a major source of
technical debt with the combinatorics of exploding,
poorly understood, poorly tested code paths. Feature
flags can be useful in combination with monitoring
tools, but often come with significant management
requirements. Typically, feature flags can help control
the number of users affected, the categories of users
affected, and the duration of impact.

reversions & quick fixes
Reversions and quick fixes are the result of great
deployment automation. When you can deploy
quickly and confidently, you can push a fix or a revert
to a historical known-good state to deal with any
issues that arise. Even if you’re not doing continuous
deployment, if you have proper tooling in place, you
should be able to confidently deploy at any time —

knowing that you can quickly respond to a failure as
soon as it happens.

Reversions and quick fixes help with duration of
impact. While we as a community have had access
to many of these tools for a while, there are myriad
ways to apply them. Smartly combining tools with an
approach that treats them as part of your validation
cycle makes it possible to think of these as part
of your testing suite, not just as tools for crisis
management.

If you’re using these tools, even just for crisis
management, then you’ve already made the
investment required to get them set up. The real
point of leverage is in recognizing the scenarios
in which it makes more sense to catch things with
these tools that we would have previously thought
about catching in a test environment, and planning
for these situations intentionally.

19A Rational Guide to Testing in Production

A summary of tooling and risk

Below is a chart summarizing the contribution of these various tools to managing
risk and user impact in a production environment. One notable takeaway is the
limited capability to address the severity of an impact. A small number of users
impacted for a short period can still witness a problem in a critical use case in
your product. For this reason, it’s helpful to have a clear understanding of which of
your flows are absolutely critical to the core function of your product and which are
merely inconvenient if they are temporarily unavailable. This knowledge will help
define the acceptable level of risk in different areas more clearly, and help identify
which classes of errors are acceptable to catch in production.

20A Rational Guide to Testing in Production

21A Rational Guide to Testing in Production

A REAL-WORLD
EXAMPLE

Now that we have an expanded toolkit, let’s take
a look at a real-world example, evaluating ROI
and looking for the cases that are better caught
in production instead of in a pre-production
environment. For the purposes of illustration,
we’ll focus on the large dataset case, but the
approach should apply wherever you are trying
to make this decision.

It is not unusual or uncommon for production
OLTP datastores to be operating on data sizes
on the order of 10TB–this is certainly the case
at CircleCI. The volume of data at CircleCI
matters for a couple of reasons. First, there are
likely some surprising entries in the dataset
after 9 years of operation – entries that may
not be considered by a brand new developer
modifying functionality of our systems in
novel ways. Second, any database engine with
a query planner introduces the possibility of

22A Rational Guide to Testing in Production

executing queries differently on datasets that are
vastly different in size. An index that gets chosen in a
small testing environment may no longer be selected
in the larger production dataset.

Once we decide to execute at least a portion of our
testing on a production-sized dataset, we have three
major considerations to try to solve for:

• Getting production data into our testing
environment

• Ensuring datastore capacity in testing with
either multiple users or largely parallel test
systems

• Maintaining privacy in our production data,
likely through anonymization

Starting with making production data available for
testing, there are two fairly obvious approaches: load
data for individual test runs, or maintain datastores
that can be accessed by those test runs.

If we are loading the data into a dynamic test
environment, the lowest overhead option is to
transfer a disk-level image, as this avoids all the time
and effort involved with writing through our database
engine. At 10TB, if we had perfect Gb ethernet (an
unreasonable expectation), the data transfer alone
would take about 22 hours. Not great for kicking off a
CI run.

A managed instance of the DB is much more viable
at this size, especially if you have any goals for
performance.There are some initial barriers, such
as the desire to split our tests to run in parallel and
the volume of CI runs we are doing at any given
time. Let’s start from the minimum possible cost by
assuming we only test merges to master (ie, right
before production) and we somehow manage to
identify the tests that cover the likely challenging
scenario so they can be serialized in a subset of our
workload and use a single shared DB instance.

23A Rational Guide to Testing in Production

Assuming no requirements for high availability or
resilience in this test instance, along with modest
performance, we can probably use a basic xlarge
instance from EC2 (around $150/month). Adding gp2
EBS storage to hold the data brings that up to $250/
month or $3k/year. That actually sounds pretty good.
Except now we have a replica of production data that
needs maintaining and it’s in the deploy path for our
core application, so it needs dedicated engineering
time. Assuming there is ETL tooling, security, and
operational maintenance, let’s estimate that takes up
50% of an engineer’s time (or smaller amounts from
multiple individuals).

Since our dataset includes Personally Identifiable
Information (PII) in it so our engineer also has to
anonymize the data. We’ll pretend we can get that
done within that 50% time allocation.

In theory, we now have a viable production-like
dataset. Unfortunately, when we anonymized the
data, we removed our two biggest classes of error

detection. The old data of surprising shape is now a
string of random characters like every other record.
And we’ve changed the cardinality of the data in
a way that makes the effectiveness of indexes
impossible to predict.

Admittedly, the cost of engineering time is highly
variable, but let’s estimate we’re now spending over
$50k/year. We have single point of failure in our
delivery pipeline, we’ve manipulated the data in a
way that makes it decidedly *not* production, and
we’ve chosen a subset of our tests to run to keep
things flowing. The usefulness of this effort is also
quite variable, but at CircleCI I’d estimate we’d catch
around 5-10% of the edge cases that we’d find in
production.

To increase test coverage, we’d either have to ramp
up our database instance count so we could run in
parallel, or slow down all delivery to share a single
instance on more tests. Let’s choose the former and
spend $30k/year on database instances so we can

24A Rational Guide to Testing in Production

get 10x parallel builds talking to these DBs. Maybe
now we’ll catch 25% of cases.

This entire model assumes that we write all of our
tests in a way that will identify a slow response to a
query during our test cycle. That is very uncommon
from my experience. Even teams that are good at
performance testing are making conscious decisions
about which code paths to test. Let’s assume
that building and managing the tooling to support
broader validation of response times throughout the
application is equivalent to at least another 50% of an
engineer’s time.

All in, we’re getting close to $150k/year. What
happens if we don’t do this at all?

The cost when we catch these issues in production
is mostly measured in terms of the impact to users.
So we need some reasonable assumptions on two
values. First, the likelihood of creating a bug that is
difficult to catch in a developer or CI environment,

related to the scale of data, and that has a severe
impact on users once it’s in production. Based on my
own experience, I’d call this a once-per-year event.
Second, we need to estimate what the financial
impact is of this event. At once per year, we’re trading
off against a $150k alternative.

With some basic monitoring tools and an all-or-
nothing deployment strategy, you’d notice this event
pretty quickly. Based on what we see in our customer
base, a team with the ability to revert the changes
might identify and fix them in about 15 mins. Is a
15-minute degradation in your application going to
cost you $150k? Only you know that.

As an example, on August 1, 2012 Knight Capital lost
USD $440m in 45 mins–close to $150 *million* every
15 minutes. If their issue was preventable for $150k /
year (it was actually preventable for much less), they
could have spent that for a thousand years to reach
their inflection point. On the other hand, the average
blogging engine with no SLAs to their customers

25A Rational Guide to Testing in Production

would gain very little from this level of investment.

So far, that impact assessment assumes all of your
customers are affected. If we layer in some better
operational tooling, like a canary deployment, we
can put our updated software into production and
only route 2% of traffic to it. Assuming your usage
is high enough, you should quickly see the same
effects but only affect 2% of your traffic. Since we’re
talking about code changes over large data sets, we
just have to remove the routing to the canary. This is
near instant, but let’s call it 5 minutes to recover to be
generous.

One third of the impact time and one fiftieth of the
impacted traffic. Now you’d have to be in a position
where a 5-minute degradation for 2% of your traffic
(possibly only 2% of users) would be worth $150k.
Put differently, the previously described 15-minute
degradation for all users would be worth $22 million
to your business.

It’s important to highlight that none of these numbers

are correct for your business. In fact, every detail will
likely be different based on your team, your product,
and your users. But the two things that you should
take away are the simplicity and the precision.
This exercise is not one of itemizing every detail.
Think of it as a back-of-the-envelope calculation
or Fermi Problem. Identify the dominant terms and
you’ll quickly spot your answer. We all have limited
dollars to invest and want to maximize our returns.
Expanding your horizons to include production
validation and knowing how to make this tradeoff will
help you do just that.

https://en.wikipedia.org/wiki/Fermi_problem

26A Rational Guide to Testing in Production

Technology trends and shifting cost models mean
that testing in production is here to stay. And that’s a
good thing. It’s another tool to add to the validation
toolkit — a collection of tools and strategies that has
grown and evolved over the last 20 years.

While history has shown us that we can’t prevent
things from going wrong, we as a community
have also matured in our agility in accepting risk.
But when things do go wrong, we still need to fix
them. Being able to manipulate your production

environment quickly and with confidence is more
important than ever in a testing-in-production world.
And that depends on a reliable CI/CD pipeline,
solid deployment practices, and a pipeline that
continuously validates your code at every step. Once
you’ve identified what isn’t working by testing in
production, the crucial work becomes discerning how
it got there in the first place and how you’ll get the fix
out to replace it. If you can’t do that, you’ve taken on
unnecessary risks in your test-in-production model.

THE EVOLVING VALIDATION TOOLKIT

27A Rational Guide to Testing in Production

Another way of looking at it is seeing production
validation as just a logical continuation of your
delivery process. Leaning on both fast CI and testing
in production strategies can help you maintain a tight
feedback loop and keep your team in flow.

Using a combination of strategies helps you identify
issues faster, and makes a high-throughput CI/
CD pipeline even more important — once you’ve
understood the problems, you need to be able to
quickly push reliable fixes.

A final thought: the cost threshold for testing in
production used to be high, and now it’s considerably
lower. But embracing testing in production is only the
first step in making cost optimization tradeoffs. Let’s
say your system has just crossed the inflection point
at which testing in production becomes the more
economical option. Excellent: you’ve put another
tool in your toolkit and it’s a great way to manage
complex risks. But ask, “Why did I build something
so complex that I can only test it in production? Can
I build it better or design it more thoughtfully?” No
matter how cheap testing in production becomes,
you will always be able to drive down the cost of
testing your service through better design.

“�Once�you’ve�identified�what�isn’t�
working by testing in production, the
crucial work becomes discerning how
it�got�there�in�the�first�place�and�how�
you’ll�get�the�fix�out�to�replace�it.”

28A Rational Guide to Testing in Production

CircleCI was founded on
creating confidence in code
and helping our customers
move quickly.

We’ve seen the world of software
development evolve at an
unprecedented pace as our customers
have moved from Rails to iOS to
Docker to today’s massive explosion of
services.

Our highest priority has always been
enabling your confidence through
validation of your code. And pre-
production as well as production

validation are both part of that process.
I encourage you to think both more
analytically as well as holistically about
your CI, your in-production testing, and
any and all of your validation strategies
as components of the same cycle,
supporting the same aim: confidence
in code and speed to market. My hope
is that by looking at these pieces of the
validation puzzle all together, instead
of separating them into the concern of
developers vs. operators, you’ll be able
to make better cost and risk decisions,
ship better code, and create better
products.

