
1Startup Founders’ Guide to Software Delivery

Startup Founders’ Guide
to Software Delivery
Laying the groundwork for velocity
and quality at every stage of growth
BY ROB ZUBER, CIRCLECI CTO

2Startup Founders’ Guide to Software Delivery

Software delivery on a team of 2 people is vastly different from
software delivery on a team of 200. Over the growth of a startup,
processes and tool choices will evolve naturally — but either
optimizing too early or letting them evolve without a picture of where
you’re headed can cost you in time and agility later. That’s why
I’ve written this guide on how to evolve your delivery process with
purpose.

The optimal approach to software delivery is tied to your software
architecture, which, as we know from Conway’s Law, is in turn
related to your organizational structure. Throughout this ebook, I’ll be
offering insights on how each of these factors plays a role in setting
you up for either turbo-charged growth or mounting roadblocks as
you scale, all depending on the decisions you make at key inflection
points.

Full disclosure: I’m a huge proponent of CI/CD, and also the CTO of a
CI/CD company, so don’t be surprised when I encourage you to use
CI and CD throughout this guide. Among many other strategies I’ll lay
out, I will explain why it’s never too early to start using CI/CD, though
the areas it can impact will change and evolve over the course of
your startup’s growth.

Why should you listen to me?

As a 20 year software industry veteran, four-time startup founder,
and three-time CTO, I know that time is one of the most valuable
resources a startup has on its side. Make the wrong choices early
on, and you’ll lose precious runway trying to fix what could have
been avoidable problems. I’ve seen how the right choices can pay
huge dividends, as well as where to be hyper-vigilant against over-
architecting to account for every eventuality. For the past 7 years I’ve
led the engineering team at CircleCI, and from the tens of thousands
of organizations who use our platform to streamline and expedite
their software delivery, I’ve seen without a doubt what works, and
what doesn’t: for companies at every stage, and in every industry.

https://en.wikipedia.org/wiki/Conway%27s_law

3Startup Founders’ Guide to Software Delivery

Founding stage
1–10 engineers

4Startup Founders’ Guide to Software Delivery

This is my favorite stage of company development. You’re excited.
You’ve got an idea. And the last thing you want to work on is tooling.
At a certain point, you’re deploying your 20th change to your initial
environment by hand. You might be thinking “this can’t be the right
way to do this.” And you’d be right. Even though you technically can
operate like this, this is the time to put CI and CD in place. At this
early point in a company, you might not even be in the right business
(I’ve seen, and led, companies who made huge early pivots before
they landed product-market fit). But rapid delivery and confidence in
your releases will be instrumental in helping you get there.

This exploratory phase demands simplicity. Coordination costs
are low at this size so use that to your advantage: a single team, a
monolithic codebase, a basic (automated) deploy.

You don’t want to stop and ask your cofounder: “Hey, remind me the
Capistrano command?” or “Did I just push on top of your push?”

You don’t want your laptop to be the “build laptop” where when
someone wants to push code, they have to come to you.

With the click of a button, you could have CI/CD. Don’t make it
harder for yourself. CircleCI has a free plan. Use it. Just this one
single move, even if you don’t “need” it right now (and I’m going to
try to convince you that you do), will set you up to be leagues ahead
later down the road. When things get real and you’ve got a security
problem that’s blindsided you, or you actually have customers and
are tackling issues of scale, you can just ship a fix.

And that is way better than “Rob’s at lunch, we can’t deploy.”

1–10

https://circleci.com/signup/

5Startup Founders’ Guide to Software Delivery

What to do

Put CI/CD in place now.
Your application is changing a lot and you want to learn
as fast as you can. Don’t burn time trying to remember
how to safely deploy. When your systems do start to
necessitate more complex (and I will explain later why
you should defer complexity as long as you can) you will
have the practices and tooling in place to handle complex
systems.

Keep it simple.
It’s so easy to have CI and CD in place. Get Google
Analytics and set up CircleCI. At this stage, that could be
all you need. But not having them is a huge problem. By
not having these basic tools, you give your competitors a
massive edge. Building a company is all about execution;
acquire the tools you need to execute reliably, and put off
the rest.

1–10

Keep the architecture and tooling as simple as possible.
Complexity is the killer: it kills speed, culture, and product
velocity.

BONUS FOUNDER TIP

Shomik Ghosh, Principal, Boldstart VC

“�A good build tool helps the team automate processes, practice
good hygiene, etc. While a tool like CircleCI does scale, startups
at this stage should be focused on using the best tools that they
know that can integrate easily in developer workflows to make life
easier. Shipping and hiring velocity are the best predictors of early
success and so using CircleCI helps with this because it is one of
the most widely used CI/CD platforms for dev tools, and people
understand it and love using it. And it helps ship faster.

Automate core building blocks as much as possible. Rolling your
own CI/CD tool is undifferentiated for the goal of your startup,
which is the business logic that will be built on top.
Use as much of an automated process as possible for things like
that. Scaling later will mean needing to have a source of truth for
everything to help with coordination across teams. CircleCI can
help there, too. And then as you become a later stage company,
you need something that integrates easily with all different tooling
and removes friction for onboarding new devs, so any product that
helps that is useful (again CircleCI).”

6Startup Founders’ Guide to Software Delivery

Prioritize operability from the beginning.
The first developer in a startup should already take
responsibility for thinking about the operation of the
software. It should be apparent in the first line of code.
For example, the effort to select a logging library that
can redirect output to a central system is negligible.
While you’re at it, structure your logging and either
remove or structure the log points you were using to
debug as you built.

What not to do

Copy the big players.
You are not solving the same problems as Netflix, Google,
or Facebook. The advancements they are focused on are
unlikely to even translate into your context, let alone be
useful as a direct copy. Keep it as simple and flexible as
possible. Hopefully you’ll get there someday, but today is
not that day.

Think, don’t act.
Knowing what your future constraints are or might
be doesn’t mean you have to build to them. Building is
expensive, thinking is not. Think through your scaling
roadmap before you make decisions so you can
make conscious tradeoffs about what you’re deferring
to the future.

Create placeholder implementations.
This basically means to defer complexity, but jumpstart
processes that support complex parts of an engineering
org early. Traceability is a great example of a process
that’s relatively easy to set up in a monolith, but much
harder to put in once your application has scaled to
include services. Why bother? Having traceability drives
certain behaviors and decisions. Because there is even
a simple implementation, you’ll think about traceability
in everything you build. Putting these practices in place
early will actually change the way you code. You will end
up with fewer asynchronous handoffs in your codebase,
or you’ll design them in a way that you’ll be more likely to
understand later.

7Startup Founders’ Guide to Software Delivery

Very early stage
 • 10–20 engineers

 • Finding product-market fit

8Startup Founders’ Guide to Software Delivery

At this point in your company, you probably don’t have a person
dedicated to developer efficiency or tooling. You might, but it’s not
common. It’s more likely everyone is contributing to the cause.
And your team will benefit from deferring creating a dedicated Dev
Experience or Tooling team.

Why? Because at this stage you will be building this mindset into
your culture precisely by deferring the dedicated team. You get
further by having everyone be responsible than by relying on a single
person. Then people are creating tools, processes, and code that can
be shared across teams.

At 10–20 engineers, you have some practices in place, you’re
keeping your software simple. You’re finding product-market fit.
That’s the benchmark. Once you get there, you can invest.

Before product-market fit, everything you build has a high probability
of being thrown out — the goal is to build as simply as possible so
you can pivot or throw things out easily. Once you have fit, you can
start making investments.

This is the awkward stage where you are trying to manage your
ability to work independently without creating unnecessary
complexity in your operating environment. Should you break into

teams? There are too many people for one team, but your priorities
are still shifting. But it does feel cumbersome to be working on the
same thing.

You’ll be tempted to build services, but it’s too early. You’d be adding
unneeded deployment complexity that you’ll pay for later.

Rather, create boundaries and stability with components and
libraries. Whether you end up using libraries or just well-defined
boundaries between your monolith (i.e. a modular monolith) — you
can still pull it all together and deploy in a monolithic fashion This will
give you room to operate with more independence, while keeping
your deployment simple.

Breaking your codebase into services will add a whole new layer of
decisions: What kind of inter-service communication should you
use? How should you do service discovery? Or retries? There is a
massive amount of cost and complexity that comes with your first
service.

So put it off.

You will want to change your continuous integration (CI) process
without changing your continuous delivery (CD), or in other words:
change your build model without changing your deploy model.

20–50

9Startup Founders’ Guide to Software Delivery

	 Keep deployment simple.

	� Keep your build and deploy as simple as you can. Resist
the urge to create services or overly complicate anything
you can defer instead.

	 Maintain efficiency and productivity.
	� This is crucial as you grow past the 2-pizza mark. Look

for more fluid ways of creating independent work streams
without concrete team definitions.

	 Microservices.

	� Building services where you could use components or
libraries instead will create deployment overhead that a
team of this size shouldn’t have to deal with. Defer.

What to do What not to do

20–50

Have comprehensive and thoughtful test coverage
from day one.

Pay down tech debt from day one.

Let gross margin deteriorate and plan to ‘fix it later’.

Add unnecessary complexity.

BONUS FOUNDER TIP

BONUS FOUNDER TIP

Andy Vitus, Partner, Scale Venture Partners

Andy Vitus, Partner, Scale Venture Partners

10Startup Founders’ Guide to Software Delivery

Early stage
20–50 engineers

11Startup Founders’ Guide to Software Delivery

At this point in your growth, you likely have product teams. You are
starting to find ways to break up the product so teams can operate
independently. When you’ve reached this stage, you’ll see a return
on investment from sharing components and practices across
your tooling. Being able to share patterns across teams doesn’t just
save up front implementation time, it will reduce the downstream
maintenance burden. (This is why we built CircleCI orbs — because
sharing configuration across teams is such a huge value-add at this
stage of company and up)

Right about now, you may be considering breaking up your team to
accommodate different engineers’ language preference. You may
be wondering what the harm is in letting each developer work in the
language they think is best.

Don’t do it.

Yes, it may seem like you’ll move fast today, but you’ll surely be
slowed down tomorrow. The definition of speed gets so easily
connected by engineers to volume of code written. We may feel
we’re moving fast (“I know Rust! I’m writing a lot of code!”) But if you
or your engineers are writing boilerplate, then it’s a sign you should
have used a library.

Delivering value must, at this point, be the foremost priority,
not lines of code written.

The 20–50 engineer stage is the point
at which you’ll start to fracture. Invest
in countering the ability for the team
to fracture. There’s an expression
in DevOps known as “paved roads.”
This means that sure, you could go
up over the mountain by foot and
chop down trees, or you could drive over the freeway.The tooling
you provide (including CI/CD tooling) should make it easy for your
engineers to choose the well-paved paths. If the folks in your org
aren’t, you probably aren’t setting the right goals.

Put another way, me trying to use Rust because I saw a cool
YouTube video should be painful for me.

How do you pave a road? Build shared components. If it’s language
stacks, just work in a monolith. At CircleCI, we have a pre-canned
Docker container that’s already tested. If it’s a requirement that you
are up to date on CVEs, we have that built into a Clojure pipeline. We
have backend shared pieces that folks can use to build services in
Clojure. All the things everyone does at the start of a project, we have
them and you can just get what you’re working on into production. If
there are security updates, you get them for free. But: if you want to
develop in Go, your team is building all that from scratch.

What you signed up for is to deliver value to your customers. No
matter how much code you wrote and in what language, this is still
the bottom line. Make it easy for your team to make it happen.

20–50

[Paved Roads]

Offer pre-provisioned
tools and shared
components to make it
easy for your engineers
to do the right thing.

https://circleci.com/orbs/

12Startup Founders’ Guide to Software Delivery

Expose engineering to customers’ feedback.

BONUS FOUNDER TIP

Eric Anderson, Principal, Scale Venture Partners

What to do

Standards. And linters.

Coding standards are not interesting. And debating
approaches to writing code (everything from debating
indentations to parentheses) is one more thing that
people can spin their wheels on that adds no value.
Choose a standard, enforce it. Move on to delivering value.

Automate your culture.
Everything you can say as a statement about your
software, put it into CI/CD. Your decisions about how you
do things are now embedded, and automatically enforced.
That’s why you want to start with CI/CD right out of the
gate — it gives you a home to put your rules.

Create placeholders where necessary.
As an example, there are free vulnerability scanners;
just use them. Build the culture of coding standards and
practices. Add them all in your CI/CD. Later, when you
upgrade the services you’re using, you have a place to
plug in those paid services. It’s easy to do at this stage,
but hard to add in later. 20–50

“�You want an engineering team that understands why customers
want a given feature and what it is solving. There is a time
and place for large product management teams that curate
information and focus the team around core principles and
maintain consistency across a product portfolio, but this isn’t
now [early in GTM]. As you hone product-market fit, you can
best take advantage of your small team by optimizing for direct
channels of communication between customers and engineering
and maintaining tight feedback loops.”

13Startup Founders’ Guide to Software Delivery

What not to do

A complete rewrite.
You may be reflecting on how much more you know as
a team now than when you first wrote your codebase,
and be tempted to start from scratch and rewrite your
codebase with all your hard-won knowledge. Resist the
urge. Things are going to be messy but push on. You’re
just hitting your stride as a business. Contain the mess,
clean as you go, but don’t halt your progress with a
massive rewrite.

Assume shared context.
Up to about 20 people, you haven’t broken into teams,
so you can assume that people have context (that’s a
hack — not a strategy). Any larger than that, and you can’t
assume that everyone shares the same context. Invest
in shared context. Enforce that with tooling, for example,
making a build fail in CI if you didn’t comment correctly.
Make sure people understand why it’s enforced. It will
save you from writing infinite documents that no one will
read. Using tests as an example of shared contexts, a
test is an expression of expected behavior. But a lot of the
time you read old tests and don’t understand why they
would behave like that. If you broke a test, but there’s no
documentation or error message, how can you know if
it’s trustworthy?

20–50

14Startup Founders’ Guide to Software Delivery

Mid stage
50–150 engineers

15Startup Founders’ Guide to Software Delivery

Now you’re big. You can’t fight it anymore: you’re probably going to
have some services.

Your software has gotten complex enough, your number of
pipelines has increased in order to increase delivery velocity. You
probably want to decouple units of work. Before you go splinter off
completely, focus on pulling out the patterns in your delivery pipeline,
and in your approach, so that you’re not creating chaos.

As you do move into services, continue to manage the fracturing as
much as possible. Pick one thing and get it right. Figure out what a
build and deploy pipeline looks like for a single service, not for ten
services at the same time.

Consistency is the name of the game. This is not a place to
let a thousand flowers bloom. Instead: make a standard, then
replicate.

Treat your pipeline design the same way you’d treat any software
design. Build it once, try it out, build it again, do some copy-paste.
Figure out where it’s breaking down. Use the Rule of Three: at
the third case, you can build an abstraction. Before that, trying to
build a “perfect” abstraction is a waste of time because you don’t
understand it yet. You’ll burn cycles and be wrong anyway.

Time spent on building
perfect abstraction on the
first try is time wasted.

Another thing: the random
social interactions that
reinforce structure and
consistency start to fail at
this size. So folks instead

50–150

[Rule of Three]

Two instances of similar code don’t
need to be refactored, but at the third
instance, the code should be extracted
into a new procedure.
(popularized by Martin Fowler in
Refactoring and attributed to Don
Roberts.)

just focus on the effectiveness of their team because they don’t have
the perspective of what other teams are doing.

You might be on your way to having a dedicated Developer
Experience and Tooling team. In the meantime, having one team
come up with a solution and then distributing it across all other
teams can be a helpful way to bridge the gap. This approach also
avoids the risk of building a culture where delivery is someone else’s
problem — sharing these responsibilities keeps the entire team
engaged in the outcome.

16Startup Founders’ Guide to Software Delivery

What to do What not to do

Invest in consistency across delivery pipelines.
The trick here is finding the balance of assigning real
ownership without the rest of the team thinking it’s
someone else’s responsibility. Maintain a culture where
everyone believes effective software delivery is part
of their job, and then give someone the ownership to
make that a reality. Otherwise everyone solves their own
problems in their own team, duplicating work and losing
out on shared lessons.

Give teams free reign.
Don’t be lured into the false sense of velocity you feel
when letting everyone operate independently — dozens
of teams creating hundreds of local efficiencies will
come at the cost of long-term complexity.

50–150

17Startup Founders’ Guide to Software Delivery

Growth stage
150–500 engineers

18Startup Founders’ Guide to Software Delivery

This is the stage at which all the placeholders you created, and
culture you enforced through process, starts to really pay off.

You’re growing at an alarming rate so anything that comes easily
based on your prior decisions will be a huge advantage. At first, you
had an inkling that you wanted to do something and left a space for
it. Then you replaced that space with a free tool, then a paid tool,
then a person, and then a whole team, all because you thoughtfully
left a place for that team to plug in. At this point, you may have a
team of teams (SRE, Developer Experience, Release Engineering,
etc.) responsible for thinking about tooling for the rest of your
engineering organization, and that is a real transition point.

A note: don’t be overly dogmatic about this. Find the places
where consistency is driving the most value, and the places
where it will create more overhead than value. Balance enforcing
consistency with letting folks get things done.

Put your shared tooling experts on the projects that your team
will use the most, not on every single instance of someone
doing something twice.

At some point there will be places where the value of consistency is
outweighed by the overhead. Knowing where to let that happen is a
real challenge — always be aware of your tradeoffs

150–500

19Startup Founders’ Guide to Software Delivery

What to do

Invest in systems and process, not personal
relationships.
You’re past the point of being able to understand what’s
happening by just looking at everything. Now systems
keep things working, not people.

As you are completing the transition from personal
relationships to systems, make it clear how your
operational tooling is going to work. In the short term,
you’ll get better feedback about what’s happening.
Admittedly, it can be hard to build the business case for
setting up this tooling, but again it’s one of those things
that is super cheap to do early and more expensive as
you go. Start small. Do a little every day. Keep going.

Clear team boundaries are essential, such that you
can deploy your service irrespective of what’s going
on elsewhere in the system, or who you are interfacing
with. Here is where the real value of autonomy comes to
bear: you can focus on getting your work done without
interfacing with specific people to smooth the path.

150–500

Make time to address and work down technical debt.

BONUS FOUNDER TIP

Jai Das, President & Managing Director, Sapphire Ventures

“�Technical debt is something you cannot avoid. If you don’t
address these debts, in time they compound and become an
even bigger problem. Technical debt typically shows up in several
different ways. Architectural and technological debt shows up
in any software that has been written after 4-5 years. Given
the rapid change rate of cloud native technologies, software
using legacy technology will also have shortcomings in the
architecture that make it hard to extend and scale. Over time,
software accumulates code debt. Developers don’t always write
clean code with well-defined interfaces and API’s. Software
also accumulates testing and documentation debt. Very few
developers adequately document their code or write tests with
adequate coverage. Given that you cannot avoid technical debt,
the best approach is to proactively focus on fixing it.. Most good
software team leads budget six months every 4-5 years when
they stop adding any new features and just focus on resolving
technical debt.

20Startup Founders’ Guide to Software Delivery

What not to do

Reward heros.
You can no longer find the expert and get them to
fix something. At this point if you don’t have a tool to
manage something, you’re in trouble. This looks like good
documentation, clear tools, and clear process for dealing
with issues. No more patching the boat; you need robust
infrastructure and operational tooling. Don’t have your
team rely on personal relationships to get things done.

150–500

Try to fix everything.
Now you’ve got 150+ engineers working on a system.
Some parts of your codebase will be untouched since
the point at which you had 10 engineers. Others will
be actively touched every day. Worry about those first.
You’re more likely to break the legacy (aka legendary)
code than to improve it. If folks are working on it every
day, fix it first.

https://circleci.com/blog/the-little-legacy-code-that-could-a-fable-of-software-ownership/

21Startup Founders’ Guide to Software Delivery

Closing thoughts
Keep innovating as you grow

22Startup Founders’ Guide to Software Delivery

By 500+ engineers, congratulations: you are no longer a startup. You are
doing awesome. You got this far by becoming an amazing software delivery
organization, so don’t quit now.

Know that every other software organization that’s bigger than you is trying
to operate like you.

Know that every other software organization that’s bigger than you is trying to
operate like you, so don’t get sucked into their world of slow legacy processes;
keep being the model.

Specific implementations will change as you continue to grow, but don’t lose sight
of the approaches that got you here. Don’t back away from your CI/CD culture.
Yes, you need more systems and processes, but you’ll adopt them with the same
discerning eye you’ve always applied to any new tool or process: enabling velocity.

As you continue to scale, new stakeholders like auditors will make demands on
you as an organization. Understand the outcomes they need, but don’t assume
you have to follow their recommendations on how to get there. They’re not on
the bleeding edge of software development. As a successful startup with all this
growth under your belt, you are. Build tools that make it possible to still be an
awesome software team. Don’t fall off the train because you’re worried about
operating at your size.

Thanks for reading. If you can implement some of the mindset I’ve shared here,
you will be among the highest—performing software delivery organizations in the
world - and that’s something to be massively proud of.

Curious how metrics can keep your
team focused on value delivery?

In our analysis of over 55 million data points
from more than 44,000 organizations and
160,000 projects on CircleCI, we uncovered
4 key benchmarks shared by the highest
performing teams on our platform. Download
the 2020 State of Software Delivery today to
learn more.

Download Report

https://circleci.com/resources/2020-state-of-software-delivery/

