
Software Testing for
DevOps-Driven Teams
BY JUNE JUNG,
ENGINEERING MANAGER
github.com/junejung

http://github.com/junejung

If you’ve been hearing the term DevOps a lot
recently but you’re not quite sure what it is
or whether it’s relevant to your organization,
you’ve come to the right place. We’re here to
break down exactly what DevOps is so you
can determine whether it would benefit your
engineering team and, ultimately, your end
users.

We’ll cover this in depth, but for a short
introduction, DevOps is an approach to
software engineering that brings the
domains and skillsets of developers and
operators together to facilitate faster, better
development infrastructures. It’s essentially
an iterative process that enables you to test
early and often, and to consider the extended
lifecycle and operability of code early on,
to identify problems and solve them that

much faster. The end goal is to increase both
productivity and the quality of the product
and the end user experience.

As we’ll address in this ebook, DevOps isn’t
right for every organization. If your current
workflow functions well, transitioning to
DevOps may be an unnecessary undertaking.
Depending on your product, it may be the
wrong move as well. After all, an iterative
process wouldn’t serve a company that must
do major launches due to privacy and other
concerns.

However, DevOps is becoming increasingly
popular for a reason. In this ebook, we’ll walk
you through exactly what DevOps is, when it
makes sense to adopt it, and how and when
to test throughout your processes.

2Software Testing for DevOps-Driven Teams •

3Software Testing for DevOps-Driven Teams •

Table of
Contents

Moving to DevOps:
What tools do you really need?

How to Test Software, Part I:
Mocking, Stubbing, and Contract Testing

How to Test Software, Part II:
TDD and BDD

4

16

26

4Software Testing for DevOps-Driven Teams •

DevOps has been the latest in a long succession of
problem-solving processes that each come with a
digital garage full of tools: CI/CD systems, testing
frameworks, monitoring tools, and security audit
tools to name a few.

Thinking about DevOps raises a number of
questions for organizations. Which of these tools
do you need? Which will solve the problems, pains,
and slowdowns your organization faces? What
organizational structure do you need to have to
support it? What tools should you implement?

These are all fine questions to ask, but asked in
isolation, they miss the point. When you go straight
to these queries, you are thinking about solutions
before you’ve really assessed the problem that you
are trying to solve.

Organizations often think that the top-down model
(“Use this! Do this!”) will get their teams innovating
faster. Eager team leads will bring in a new CI/CD
tool and get everyone up and running on it. Providing
proper tooling for individual contributors to follow
an adopted practice is important, but the problem
begins when team leads bring in a tool without fully
understanding its value or why they are doing it.
Oftentimes, even the people who ordered the change
will forget why they put it in place to begin with,
or what they wanted to get out of it. The sad truth
is how easy it is to start misusing tools once the
original reasoning is obscured, thus creating lost or
even negative value.

Moving to DevOps:
What tools do you really need?

5Software Testing for DevOps-Driven Teams •

We want DevOps!

Many organizations are convinced that DevOps is
the solution to all their problems, if only they can get
it up and running quickly. If you’re in this position,
ask yourself, “Why do we want DevOps in our
organization? What value do we think it will bring?”

At this point, let’s briefly talk about what DevOps is,
and isn’t.

DevOps is a very specific collaboration between
developers and operations teams. In essence, it
indicates that you’ve culturally adopted development
practices into your infrastructure and operational
practices into your development cycle. What does
this look like in practice? It can mean maintaining
infrastructure as code, or creating immutable
infrastructure by building reusable components so
you can tear down or up whenever you want, giving
you version control and a history of changes you’ve
made.

It also means getting all product contributors to care
more about the end result of what they’re working on
— how does it function in the world? How are users
interacting with it? Getting people to truly care about
quality means caring about both business value and
usability. When everyone who is building a product
cares about both of these aspects, you know you’ve
achieved true DevOps adoption.

In our experience, this kind of widespread buy-in
has been particularly difficult for software teams to
achieve because it requires a lot of cooperation from
people with different skills and domain expertise.
Pulling this off depends on both cross-functional
team structure and thoughtful communication
skills. For example, if an engineer needs to talk to
someone on the business side about a database
problem, she needs to not just show the data she’s
working from, but give necessary context to focus
that person’s attention on what they should care
about and why.

6Software Testing for DevOps-Driven Teams •

New tools can sometimes seem like a quick fix,
but they are not a one-size-fits-all solution. In our
experience, keeping the following considerations
in mind before you bring in a new DevOps tool will
increase your chances of success.

1. �Make sure everyone is on the same page with
respect to what you’re trying to achieve with
this transformation. Everyone should agree on
the problem you’re trying to solve and should be
aligned on the pain points.

2. �Always start small. Don’t try to make your
entire organization into a model DevOps team
overnight. Instead, start with one team, and
see if the process change works within that
group. If you see improvements, keep moving
incrementally.

3. �Do what works for you. Know that DevOps might
not be the right solution for your organization.
Some companies have been successful for a long
time without DevOps, and it might not be right for

them, given their cultures or their product needs.
We’ve seen waterfall work really well for some
very successful organizations. For example, if
confidentiality is a big part of your company’s
product strategy, then shipping incrementally to
get feedback would not work for you, as you’d
need to keep all product details under lock and
key until a big launch. In that environment, it
would be very difficult, and counterproductive, to
build a DevOps culture.

4. �Always measure. Before you start any
improvement plan, get accurate metrics for
where you’re currently at (i.e. “our dev cycle takes
X time”). Measure before and after you make a
change, to see if you’ve improved. As an example:
When Agile transformation was at its peak, a
lot of companies adopted standups (brief daily
status meetings), without really understanding
why, and without measuring whether it had a
positive effect on their team. This likely wasted
more time than it saved.

7Software Testing for DevOps-Driven Teams •

5. �Do not try to automate everything. At least not
all at once. One misconception about DevOps
is that all the infrastructure provisioning and
the configuration management must be done
automatically. This is referred to as “infrastructure
as code.” But some things work better when they
are manual; automation is not the solution for
everything. Also, think about how many times
you’re going to run that automation script and
how much time it would take you to set up. Will
you use it thousands of times or only three?
Additionally, sometimes you have to start the
manual way to even figure out what would be the
best solution for automation.

Still itching to automate? Dockerizing your
application is a great way to automate because the
work you put in is likely to be re-used. Automating
pre-production environment creation is another
great way to implement automation. As another
example: are you trying to automate firewall setup?
That might not be worth it given the lack of API
support on a lot of current firewall software. While
it’s prudent to prepare for disaster, you’d probably be
putting so much more value into it than you’ll ever
get back out of it.

If your org is thinking about DevOps transformation,
start thinking about your speed of delivery and
quality of product. What’s getting in your way today?
Knowing the answers to these questions will help
everyone in your organization understand what your
pain points are, so you’ll be in the best position to
start improving on them.

8Software Testing for DevOps-Driven Teams •

The path to production: how and where
to segregate test environments

Once you decide to transition to DevOps, bear in
mind that bringing a new tool into an organization
is no small task. Adopting a CI/CD tool, or any other
tool should follow a period of research, analysis, and
alignment within your organization.

The precursor to any successful tool adoption is
about people: alignment on purpose, and setting
expectations appropriately, as well as getting some
“before” metrics to support your assessment.

The next step is about analysis: deducing exactly
what pipeline problem you most need to solve.
By examining your development process (which
we’ll refer to as your “path to production”) you can
pinpoint where your biggest problems are coming
from. Only when you know what problem you’re
trying to solve can you make a well-reasoned tooling
decision.

The goal in examining your path to production
is creating clear stages which will serve as
checkpoints. In order to pass from one stage to the

next, a build has to pass through these quality gates.
The gates will be separated using various kinds of
tests. Once tests are passed, quality at that level has
been assured, and the build can move on.

These pipeline stages, or build environments, are
separated by the increasing scope of responsibility
that the developer assumes, ranging from their
local laptop to the team space to the application’s
entire codebase. As the scope of responsibility
grows, the cost of mistakes is higher. That’s why we
test incrementally before passing a build to each
successive level.

What’s more, each stage requires different types of
tests. As you move from staging toward production,
the tests go from lighter weight to heavy duty. The
cost in resources increases with each stage as
well. Heavy duty testing can only happen in more
production-like environments, involving a full tech
stack or external dependencies. In order to do these
tests properly, there’s more to spin up, and they
require more expensive machinery. Therefore, it’s
beneficial if you can do as much testing as possible
in earlier environments, which are much less costly.

9Software Testing for DevOps-Driven Teams •

Now let’s look at some common types of tests.

Unit/component test: These cover the smallest
possible component, unit, or functionality. They’re
the cheapest and fastest tests to run since they
don’t require a lot of dependencies or mocking.
These should be done early to get them out of the
way.

Integration test: These check how well each unit
from the previous stage works with the other
components, units, and functionalities. In a broader
sense, it can test how services (such as APIs)
integrate with one another.

UI layer testing: This is automated browser-based
testing which tests basic user flow. It is expensive to
set up and slow to run, so it should happen later in
the pipeline.

Note: This example uses a microservices
application, which allows us to test and
deploy each service separately.

11Software Testing for DevOps-Driven Teams •

Next up, we’ll talk about how these tests fit into a
software development pipeline. Each test has a
specific role and place.

Local environment

This environment is private, limited to a single
developer and their laptop. It is the easiest in which
to make changes and test your own implementation.

The “local” we are talking about here is really just a
“personal environment.” It could be on your laptop,
but you could just as easily use a cloud environment
if the application is too big to run on your local
machine. The key here is it’s a smaller scale instance
that’s yours alone, in which you can test and debug
your implementation while you’re developing,
without interrupting other developers on your team.
Because nothing in your local environment is visible
to others, your team can agree to integrate a Git
pre-push hook into your repo to ensure the local
environment is used and to run automated tests
before code gets pushed to a remote, or shared,
repository.

Tests: The tests we recommend before moving out
of a local environment are unit tests, integration
testing with mocked components, and UI testing to
the degree that it’s possible. The more tests you can
do in this environment, the more room you’ll have to
be successful in the integration environment.

Scope of responsibility: The scope here covers
just the implementation or functionality of what
you’re building. Does your component work by
itself? The surface area is relatively small. But
this is the last environment before you merge to
a shared environment. Therefore, you’ll want to
test responsibly so that you don’t break the shared
environment later and block active development by
others.

12Software Testing for DevOps-Driven Teams •

CI environment

This is the shortest-lived environment; it lives with
the build. It gets created when a build gets triggered
and torn down once the build is done. It’s also the
most unstable environment. Our developers check
code into the CI environment. Since other developers
could be deploying at the same time, the CI
environment has a lot of deployment activities that
are happening concurrently. As a result, the CI can,
and often does, break. That’s ok–it’s meant to break.
The key is fixing it when it does.

If you were unable to spin up your entire application
in a local environment (which is highly likely), the CI
environment will be the first in which you’ll be able
to do browser-driven testing. You’ll also be able to
do any UI testing that you weren’t able to do in your
local environment.

In this environment, you should be using mock
external services and databases to keep things
running fast.

We suggest automating the lifetime of the CI
environment like this: as soon as you merge the
code, the CI environment automatically spins up,
runs that code, tells you whether it’s safe or not, and
then tears itself down. Using Docker to automatically
spin up the environment will save time, and the
whole process of automated builds and environment
creation will make it easier for team members to
commit more often.

13Software Testing for DevOps-Driven Teams •

Development environment

The development environment is a shared
environment with other developers. In this
environment, every service within the application is
getting deployed every time. These environments are
very unstable because there are constant changes
from different teams. It’s important to note here that
your integration and browser-based tests may now
fail, even if they passed in the CI environment. That’s
because they are now fully integrated with outside
services and other services are also currently in
development.

Whereas the CI environment is just for your team
(or for one service of your product) and can be torn
down between builds, this development environment
is for your entire product codebase. If you choose
to merge into a development environment for just
your team, that will have a smaller scope of impact
than merging into the full development environment
shared by all teams. In the development
environment, system health check monitoring is

now required since it’s a fast moving environment
with many different components. Since it sits in
the middle of the path to production, when this
environment breaks, it has a detrimental effect on
those that follow - a failure here blocks all changes
and no code can move forward if the environment
breaks.

In the development environment, some external
services are mocked and some are not, depending
on how crucial each service is to what you’re testing
and also the cost of connecting to that external
service. If you are using mocked data here, make
sure that a decent amount of test data available.

Everyone in the organization has visibility into this
environment; any developer can log in and run it as
an application. This environment can be used by all
the developers for testing and debugging.

14Software Testing for DevOps-Driven Teams •

QA environment

This is the first manually deployed environment
in this scenario. It is manually deployed because
the QA team needs to decide which features are
worth testing on their own, based on the structure
of the changes. They might take a stacked change
(Change A, B and C) and test them each separately.
In this scenario, they test Change A, and once
they have assurance that it’s working as expected,
they can move on and test Change B and when it
throws an error, they know that the issue is isolated
to Change B. Otherwise, in the case of just testing
Change C, if it were to throw an error, it would block
progress on C, B, and A.

The QA environment is a controlled and integrated
environment. Here, the QA team is controlling what
change is coming in; in contrast, in the development
environment, any change can happen at any time.
The build is now integrated with the services it will
interact with in the application.

In this environment, we now have the same
infrastructure and application as in production. We
are using a representative subset of production
data–close enough to production data to test.
The QA engineers or testers understand what they
should focus their tests on. We recommend manual
deployment at this stage so that small changes can
be tested in an isolated environment to help identify
bugs. The closer the QA environment can get to
production, the higher confidence you will have in
the results of the tests.

15Software Testing for DevOps-Driven Teams •

Staging environment

This is the last environment before production. The
purpose of staging is to have an environment almost
exactly the same as production. When you deploy
something into staging, and it works, you can be
reasonably assured that that version won’t fail in
production and cause an outage. All environments
help you catch potential issues; staging is the final
check of confidence. Here it is important to have
almost the same amount of data as you would in
production. This enables you to do load testing, and
test the scalability of the application in production.

Production-ready code should be deployed to
this environment; again, almost the same as in
production. Infrastructure, databases, and external
service integration should be exactly the same as
in production. It will be expensive to maintain and
build – the only thing more expensive is not doing it,
and breaking production. The scale can be smaller,
but your setup and your configuration has to be the
same.

This is the last gate before production to test the
implementation, migration, configuration and
business requirements, so we strongly encourage
you to get business signoff before you get to
staging. Otherwise, it will be very expensive to make
a change. While you’re doing development, ensure
that whoever owns the product or requested feature
thoroughly understands what it is you’re building. Be
on the same page the whole way through.

Every developer who is implementing code in their
local environment should be able to have visibility
into how it will be deployed into production as well.
Only by being aware of how their code is being
deployed can developers make the greatest impact
in reducing errors before they move onto the later
stages.

16Software Testing for DevOps-Driven Teams •

In this section, we’ll cover the techniques of mocking
and stubbing, and contract testing to help each
testing layer. Refer back to the test pyramid above,
which helps illustrate the difference between types
of tests and when it’s advantageous to do each.

As we mentioned, unit or component tests (shown
at the bottom of our pyramid) are inexpensive and
fast to perform. Rely heavily on these. Only once
you’ve exhausted what these tests can do, move on
to more time- and resource-intensive tests, such as
integration and UI layer tests.

How to Test Software, Part I:
Mocking, Stubbing, and Contract Testing

17Software Testing for DevOps-Driven Teams •

Mocking and stubbing

A lot of people think that mocking and stubbing are
used just for unit and component tests. However, we
want to show you how mock objects or stubs can be
used in other layers of testing as well.

Let’s start with some definitions.

Mocking means creating a fake version of an
external or internal service that can stand in for the
real one, helping your tests run more quickly and
reliably. When your implementation interacts with
an object’s properties, rather than its function or
behavior, a mock can be used.

Stubbing, like mocking, means creating a stand-in,
but a stub only mocks the behavior, not the entire
object. This is used when your implementation only
interacts with a certain behavior of the object. For
a more in depth look at the differences between
mocking and stubbing, check out Martin Fowler’s
post “Mocks Aren’t Stubs.” Let’s discuss how we
can apply these methods to improve our testing in
all levels of the pyramid above.

Mocking and Stubbing in unit +
component tests

Mocking of external functionality

We recommend mocking or stubbing when your
code uses external dependencies like system calls,
or accessing a database. For example, whenever
you run a test, you’re exercising the implementation.
So when a delete or create function happens, you’re
letting it create a file, or delete a file. This work is
not efficient, and the data it creates and deletes
is not actually useful. Furthermore, it’s expensive
to clean up, because now you have to manually
delete something every time. This is a case where
mocking/stubbing can help a lot.

Using mocks and stubs to fake the external
functionality help you create tests that are
independent. For instance, say that the test writes a
file to /tmp/test_file.txt and then the system under
the test deletes it. The problem then is not that the

https://martinfowler.com/articles/mocksArentStubs.html

18Software Testing for DevOps-Driven Teams •

test is not independent; it is that the system calls
take a lot of time. In this instance, you can stub the
file system call’s response, which will take a lot less
time because it immediately returns.

Another benefit is that you can reproduce complex
scenarios more easily. For instance, it is much
easier to test the many error responses you might
get from the filesystem then to actually create
the condition. Say that you only wanted to delete
corrupt files. Writing a corrupt file can be difficult
programmatically, but returning the error code
associated with a corrupt file is a matter of just
changing what a stub returns.

See this example code:

def read_and_trim(file_path)

	 return os.open(file_path).rstrip(“\n”)

This method will call system call to look for the file from the
given file path and read the content from them and removing
new line terminator.

The code above interacts with Python’s built-in
open function which interacts with a system call to
actually look for the file from the given file path. This
means that wherever and whenever you run the test
for that function:

1. �You will need to ensure that the file that the test
will be looking for exists; when it does not exist,
the test fails.

2. �The test will need to wait for the system call’s
response; if the system call times out, the test
fails.

Neither case of failure means your implementation
failed to do its job. These tests are now neither
isolated (since they’re dependent on the system
call’s response) nor efficient (since the system call
connection will take time to deliver the request and
response).

19Software Testing for DevOps-Driven Teams •

The test code for the implementation above looks like this:

from unittest.mock import patch

content = ”fake file content\n”

trimed_content = content.rstrip(“\n”)

@patch(“builtins.open”, new_callable=mock_open, read_data=content)

def test_read_trim_content(self, mock_object):

	 file_path = “/fake/file/path”

	 self.assertEqual(read_and_trim(file_path), trimed_content)

	 mock_object.assert_called_with(file_path)

We are using a Python mock patch to mock the
built-in open call. In this way, we are only testing
what we actually built.

Another good example of using mocks and stubs in
unit testing is faking database calls. For example,
let’s say you are testing whether your function
deletes the entity from a database. For the first test,
you manually create a file so that there’s one to be
deleted. The test passes. But then, the second time,
someone else (who isn’t you) doesn’t know that they

have to manually create the entity. Now the test
fails. There was no file to delete since they didn’t
know they had to create the entity, so this is not an
independent test.

In cases like these, you’ll want to prevent modifying
the data or making operating system calls to remove
the file. This will prevent tests from being flaky
whenever someone accidentally fails to create test
data.

20Software Testing for DevOps-Driven Teams •

Mocking and stubbing of internal
functions

Mocks and stubs are very handy for unit tests. They
help you to test a functionality or implementation
independently, while also allowing unit tests to
remain efficient and cheap.

A great application of mocks and stubs in a unit/
component test is when your implementation
interacts with another method or class. You can
mock the class object or stub the method behavior
that your implementation is interacting with.
Mocking or stubbing the other functionality or class,
and therefore only testing your implementation logic,
is the key benefit of unit tests, and the way to reap
the biggest benefit from performing them.

Mocking in integration testing

With integration tests, you are testing relationships
between services. One approach might be to get
all the dependent services up and running for the
testing environment. But this is unnecessary. It can

create a lot of potential failure points from services
you do not control, adding time and complexity to
your testing. Try narrowing it down by writing a few
service integration tests using mocks and stubs,
which will make your test suite more reliable.

In integration testing, the rules are different from unit
tests. Here, you should only test the implementation
and functionality that you have the control to edit.
Mocks and stubs can be used for this purpose. First,
identify which integrations are important. Then, you
can decide which external or internal services can be
mocked.

Let’s say your code interacts with the GitHub API,
like in the example below. Since you personally can’t
change how the GitHub API is responding from your
request call, you don’t have to test it. Mocking the
expected GitHub API’s response lets you focus more
on testing the interactions within your internal code
base.

21Software Testing for DevOps-Driven Teams •

@unittest.mock.patch(‘Github’)

def test_parsed_content_from_git(self,

mocked_git):

 expected_decoded_content = “b’# Sample Hello World\n\n> How to run this app\n\n- installation\n\n dependencies\n”

 mocked_git.get_repo.return_value =

expected_decoded_content

 parsed_content = read_parse_from content(repo=’my/repo’,

file_to_read=’README.md’)

 self.assertEqual(parsed_content[‘titles’], [‘Sample Hello World’])

In the test code above, the read_parse_from_content
method is integrated with the class that parses the
JSON object from the GitHub API call. In this test, we
are testing the integration between two classes.

Since we are using a mock in the test above, your
test will be faster and less dependent by avoiding
making the call to the GitHub API. This will also save
time and effort by not needing internet access for the
environment that will run the test. However, in order
for you to have reliable testing while mocking the
dependent external services, it’s extremely important
for you to understand how external dependencies will
behave in the real world.

For example, if the expected_decoded_content in
the code example above is not how GitHub returns
the repo file content, incorrect assumptions from the
mocked test can lead to unexpected breakage. Before
writing the test that will have the mocked response,
it’s best to make the actual snapshot of the external
dependency call and use it as a mocked response.
Once you have created the mocked response with
the snapshot, that should not change often since
the Application Programming Interface should
almost always be backward compatible. However,
it is important to validate the API regularly for the
occasional unexpected change.

22Software Testing for DevOps-Driven Teams •

23Software Testing for DevOps-Driven Teams •

Mocks and stubs in contract-based
testing (in a microservices architecture)

When two different services integrate with each
other, they each have “expectations,” i.e. standards
about what they’re giving and what they expect to
get in return. We can think of these as contracts
between integrated endpoints. Because of this
standardization, contract tests can be used to test
integrations.

Let’s walk through an example. The version-tagged
API should not change often, possibly not ever. For
any API you choose, you will generally be able to
find documentation about that API, including what
to expect from it. When you decide to use a certain
version of an API, you can rely on the return of that
API call. This is the presumed contract between the
engineers who provide the API and the engineers
who will use its data.

You can use the idea of contracts to test internal
services as well. When testing a large scale
application using microservices architecture it
could be costly to install the entire system and
infrastructure. Such applications can benefit greatly
from using contract testing. In the testing pyramid,
contract testing sits in between the unit/component
testing and integration testing layers, depending on
the coverage of the contract testing in your system.
Some organizations utilize contract testing to
completely replace end-to-end or functional testing.

24Software Testing for DevOps-Driven Teams •

Contract-based testing can cover two important
things:

1. �Checking the connectivity of endpoint that has
been agreed upon

2. �Checking the response from the endpoint with a
given argument

As an example, let’s imagine a weather-reporting
application involving a weather service interacting
with a user service. When the user service connects
to the endpoint of the weather service with the date
(the request), the user service processes the date
data to get the weather for that date. These two
services have a contract: the weather service will
maintain the endpoint to be always accessible by the
user service and provide the valid data that the user
service is requesting, and in the same format.

Now, let’s take a look at how we can utilize mocks
and stubs in the contract test. Instead of the
user service making the actual request call to the
weather service in the test, you can create a mocked

response. Since there is a contract between two
services, the endpoint and response should not
change. This will free both services from depending
on each other during tests, allowing tests to be
faster and more reliable.

It can be useful to run the same test in a different
environment with a different configuration. Contract
tests are one of the great examples of the latter
case. We can achieve different goals when running
contract tests in different environments with
different configurations. When it’s a lower layer
environment such as Dev or CI, running the test
with a mocked contract would serve the purpose
of testing our internal implementation within the
constraints of the environment. However, when it
goes to an upper layer environment such as QA
or Staging, the same test can be used without
a mocked contract but with the actual external
dependency connection. Mbtest is one tool that can
help with the kind of contract testing and mocking
response explained above.

http://www.mbtest.org/

25Software Testing for DevOps-Driven Teams •

We’ve taken a look at examples of different layers of
testing using mocks and stubs. Now let’s recap why
they are useful:

1. �Tests with mocks and stubs go faster because
you don’t have to connect with external services.
There’s no delay waiting for them to respond.

2. �You have the flexibility to scope the test to cover
just the parts you can control and change. With
external services, you are powerless in the case
that they’re wrong or the test fails. Mocking
ensures you are scoping tests for work that you
can actually do and not giving yourself problems
you can’t fix.

3. �Mocking external API calls helps your test to be
more reliable

4. �Contract testing empowers service teams to be
more autonomous in development

Next up, we’ll explore the principles of test-
driven development (TDD) and behavior-driven
development (BDD), and see how they can improve
outcomes for everything from functional testing to
unit testing.

26Software Testing for DevOps-Driven Teams •

How to Test Software, Part II:
TDD and BDD

So far, we’ve discussed what mocks and stubs
are, as well as how to use them in various testing
scenarios to give yourself more flexibility, speed up
your tests, and get more determinism out of your
test suite.

Now we’re going to cover two methods for software
development that take testing into consideration
at the outset: test-driven development (TDD) and
behavior-driven development (BDD). Using these
methodologies will improve the way you think about
software development, and greatly enhance the
efficacy of your tests. Let’s dive in:

TDD: test-driven development

TDD (test-driven development) is known as a
method for writing unit tests. We are going to talk
about using TDD principles for everything from
functional testing to unit testing.

Red-Green Refactor: test-driven
development principles

With TDD, you design your code before you
implement it. Therefore, TDD forces you to think
about your components’ behavior before you write
it. It’s also a great way to keep you focused on what
you are trying to deliver. In TDD, you write tests for
your method or implementation to test what that
implementation should do.

27Software Testing for DevOps-Driven Teams •

Remember, with TDD, your test will always fail first.
You haven’t written the code yet so there is no
functionality. This is a good thing! It proves that your
test won’t just pass any old implementation!

Next, it’s time for you to prove that your test will
pass when the implementation is valid and it serves
its purpose. Once you check that your test fails
when the implementation doesn’t work correctly
and passes when implementation does function
correctly, you can refactor your code to be better
and clearer. Since you already have the test right
there, refactoring will be much easier and you
can do it with the assurance that your tests will
tell you whether you changed the code’s behavior
successfully. This is called red-green refactoring.

Red: First, you make your test fail. Green: Then,
make it pass.

Test first, refactor after. This ensures that your
code is clean and production-ready. It’s important to
actually go through red and green before you make
your code perfect. The red stage will verify that your
test is not just going to pass all the time. You

can feel confident it’s deterministic later on when
things get more complex. Later, in the green stage,
your focus isn’t “How can I write the best code?”
but rather “How can I write code that meets the
requirements?” Think of this as the stage to prove
that your test is passing for the valid use cases.

In the next stage, refactoring, you will have a change
to revisit your code. The refactoring stage is when
you can write cleaner, more intelligent code, and
make improvements. Often, engineers start writing
in the beginning and lose focus of what they were
supposed to deliver. Other times, engineers will
write tests at the same time as they are creating the
implementation and create unexpected bugs. TDD
helps avoid those mistakes.

28Software Testing for DevOps-Driven Teams •

The test you write might look like this:

describe(‘sum()’, function () {

 it(‘should return the sum of given numbers’, function () {

 expect(simpleCalculator.sum(1,2)).to.equal(3);

 expect(simpleCalculator.sum(5,5)).to.equal(10);

 });

 })

1. �Red: Your implementation is currently empty. You haven’t implemented yet, so the tests will fail. You want to
verify that your test is deterministic: it will tell you when it should fail or pass.

var Calculator = function () {

	 return true // implementation goes here

}

29Software Testing for DevOps-Driven Teams •

2. �Green: Implement it. Make the test pass. Here we’ll write the code that will make the test pass.

var Calculator = function () {

	 return{

		 sum: function(number1, number2){

			 return number1 + number2;

		 }

	 };

}

Now your test will be satisfied, because we’ve added
the function.

Refactoring code: Now, refactor your code to be
clearer and more readable. The first two steps
made it so that your test is reliable and you
don’t have to worry about modifying your code’s
behavior accidentally. Remember, you verified the
functionality of your code with the test that went
through the red and green stages. Once the code
is in the refactoring stage, the tests should not be
changed. If you make a change now, you increase

the likelihood of a functionality failure in your source
code. If you need to change the tests, make sure to
do so in the red/green stage.

Once you have a valid test, you can refactor the code
to be cleaner and more aligned with the style or
overall class.

30Software Testing for DevOps-Driven Teams •

Putting it all together

The example above is for a unit test. But how can we
use TDD on other layers of the test pyramid?

When we make an implementation, we’ll start with
UI layer testing first (using BDD, which we’ll explain in
the next section). Even though these UI tests will not
pass for a long time, starting from the tests helps
us focus on what we are actually trying to build and
how the backend code will interact with the frontend
layer. This approach allows developers to design
their implementation before they write it.

From there, we start working on unit/component
testing or integration testing, depending on the work
itself. If the architectural design is clear before we
dig into the code base, we start writing integration
tests. These will also fail for a while. While they may
not be complete at the moment you write them, they
still serve the function of helping you think about
what you are trying to build and what the initial
design is.

When we move onto the unit/component test, we
finally start red-green refactoring in the unit test
layer, leaving UI and integration layers in ‘red’ stage
and completing the unit tests to the refactoring
stage. Then we move back to the integration tests
and make the text green, then refactor. Afterward,
the same step applies to the UI testing

As you can see, we are applying the TDD principles
throughout all the layers of testing. The principle is
the same, the only difference is the scale.

31Software Testing for DevOps-Driven Teams •

BDD: behavior-driven
development

User Journey Story and Given, When
and Then

Any time there is a new feature request, people from
the product side of the business write story-level
tasks for engineers, including user story and user
acceptance criteria. This way, you as an engineer
can understand the value to the business and think
from the user’s perspective about the functionality
that they will implement. By seeing user stories,
engineers can also better understand the scope of
the work.

User-acceptance testing (UI-driven testing) builds
on this user acceptance criteria and user story. UI-
driven testing usually uses tools like Selenium or
Cucumber which help test against the user’s journey
on a site that’s up and running.

The user journey story represents a user’s behavior.
Using the business requirements provided, the
developer can think about scenarios of how a user
will use this new functionality. And those scenarios
can be used to write the tests. This is called
behavior-driven development (BDD).

BDD is a widely-used method in UI-driven testing. It
is written in a structure known as “Given, When and
Then.”

Given: the state of the system that will receive the
behavior/action

When: the behavior/action that happens and causes
the result in the end

Then: the result caused by the behavior in the state

It’s a good idea to think about the user journey and
user’s behavior first, so that when you implement
your feature, it is with consideration of how the user
will interact with it.

https://www.seleniumhq.org/
https://cucumber.io/

32Software Testing for DevOps-Driven Teams •

Here is an example:

Scenario: the user signs up to the site

Given: the user visited the site

When: the user clicked the signup button

Then: ensure the user can access the signup page

Here are some simple test code examples with
Cypress (for an easy integration with this tool,
explore the Cypress orb):

 describe(‘User can signup to the test-example site’, function() {

 it(‘clicking “signup” navigate to a signup url’, function() {

 // Given

 cy.visit(‘https://test-example.com/’)

 // When

 cy.contains(‘signup’).click()

 //Then

 cy.url().should(‘include’, ‘/signup’)

 })

})

Using BDD in UI layer testing make sense since it involves the part of the application that the user will interact
with. Other layers of testing won’t be as well-suited to using BDD. While UI layer testing with BDD is invaluable to
the process of building quality software, it’s very expensive and inefficient.

https://www.cypress.io/
https://circleci.com/blog/streamlined-web-application-testing-with-the-cypress-circleci-orb/

33Software Testing for DevOps-Driven Teams •

As we mentioned earlier, utilizing different layers
and kinds of testing means that when something
goes wrong, it will be way faster to pinpoint exactly

what is failing and be able to fix it more quickly. This
reduces debugging time and enables you to detect
low-level problems much more cheaply and quickly.

34Software Testing for DevOps-Driven Teams •

Conclusion: happy path and edge cases

When you write tests, it’s easy to think about what
will happen when everything goes well. It can be a
challenge for engineers to think about edge cases.
That is expected.

When we think about UI layer testing, we are
assuming that (almost) the entire site is already
up and running and your tests are running against
them. Now, it’s hard to imagine every single
pathway that a user may take, and it would be very
expensive to test every single pathway that could
possibly occur. Therefore, it’s a good practice to
focus on the happy path and major failure path:
these will cover both the main behaviors and the
worst-case scenario. Often the edge case bugs are
discovered from QA exploratory testing in a QA-
like environment. In this process, QA will analyze
the business risk and communicate the edge case
scenario to the engineers to ensure that they fix the
bugs before the code goes to production, and write
new tests to cover the edge case scenarios.

When engineers understand the system and
circumstances better, it becomes easier to think
about edge cases. This results in the tests in the
edge cases being covered better by the lower layer
of the test pyramid - which is always preferable, as
they’re more efficient. That said, maintaining tests
are also part of an engineer’s job. When your code
evolves, your tests need to be changed as well.
Having meaningful and behavior-driven tests is more
important than the number of tests that you have.
The purpose of testing, after all, is to deliver quality
software to production.

Making your code base more testable is a
worthwhile investment, and it will help you scale
your business and software in the long term. This
fundamental work will allow you to optimize your
software’s path to production, giving you more
confidence every time you deploy.

35Software Testing for DevOps-Driven Teams •

Learning when and how to use DevOps, and
mastering the ins and outs of testing, goes a long
way toward ensuring that you’re delivering the
highest quality software possible. It also reduces
wasted time and resources, maximizing both
efficiency and output. To learn more about how to
make your software delivery faster and more robust,
visit circleci.com.

Conclusion

http://circleci.com

