
1

26 Paths to Enterprise Application Security

leakage, cryptographic issues, carriage return and line feed (CRLF)
injection, and code quality flaws.

The researchers note that most of the flaws do not pose severe risks
to the application. However, these flaws do slow production in the long
run.

Organizations can secure their assets and defend their software by
integrating application security best practices into their software
development life cycle. For example, integrating security tools into your
application development environment can make the security process
and workflow more straightforward and effective by making security
issues more visible, automating auditing, and providing real-time
insights to threats and vulnerabilities.

In this ebook, we examine the top security risks modern enterprise
applications face and help you understand the journey toward
mitigating each risk.

Introduction

Enterprise applications are becoming more central to organizations’
value streams, as companies across various industries look to
accelerate their digital transformation. The consequent and exponential
adoption of cloud services and applications is further fueled by
remote work as teams seek to maintain productivity with effective and
transparent processes.

This evolution often involves shifting app development to containers
and microservices, which is great for rapid development and
deployment, but leaves open the door for security vulnerabilities to
sneak in. As development practices evolve, new threats and pitfalls
emerge, such as external attacks, privilege abuse, and data theft.

Most organizations fail to adopt application security best practices
that work to protect software, data, and users. In application security
company Veracode’s annual State of Software Security Vol. 11 report,
76 percent of the 130,000 applications tested have at least one security
flaw, while 24 percent contain high-severity flaws (those rated by
Veracode as level 4 or 5). The most common flaws are information

https://info.veracode.com/report-state-of-software-security-volume-11.html

36 Paths to Enterprise Application Security

Virtual machines
Virtual machines (VMs) are isolated from the physical operating
system. However, virtualization software exploits can spread malware
to the physical system, particularly when hypervisor software runs the
VMs.

For example, scripts can run on a compromised host and interact with
logged-in guests. An attacker can maliciously install trojans on the
host and guest machines. They can also create an account with admin
privileges, enabling the attacker to read, collect, or destroy company
data.

Incorrect VM use can also impact a company’s efficiency and
undermine security efforts. An example of this is VM sprawl, which is
when developers create VMs for testing but fail to delete them when
they no longer need them. Developers often leave these test VMs
unpatched and without security updates. If teams fail to track the

number of VMs, along with when and where they are deployed, it not
only causes security concerns, but also consumes valuable hardware
compute power and disk space.

Companies should uninstall all obsolete applications and get new
security updates to patch missing files and prevent attacks. Developers
should regularly update running host and virtual operating systems
through manual updates upon starting a virtual system. That being
said, the best way to control VM sprawl is through regular lifecycle
management using VM inventory reporting software.

Vulnerabilities in the server, VM, or container operating system

https://www.vmware.com/topics/glossary/content/hypervisor
https://searchsecurity.techtarget.com/definition/Trojan-horse

46 Paths to Enterprise Application Security

Teams should also implement role-based access control (RBAC) to
define appropriate roles and permissions for different users. RBAC
ensures that only certain people have the ability to create VMs and
snapshots, reducing the chance of wayward VMs.

If a file is suspicious, VM applications enable you to take a snapshot
(both manually and automatically) of your current VM configuration.
Then, if the file or service causes an unrecoverable VM problem, you
can quickly revert to a previous stable-state VM snapshot. However, for
greater security, short-term snapshot storage helps prevent attackers
from stealing valuable information from snapshots.

Automated software monitoring tools can track and monitor your
virtualized environment for anomalies and alert administrators of
possible threats. An effective backup and disaster recovery plan helps
ensure you retrieve your files after an attack.

Install the latest firmware on hosts and the latest security patches on
virtualized infrastructure. Additionally, network elements (switches,
routers, and more) should have the newest firmware.

Containers
Containers provide a lightweight, portable, scalable, and easy way
to build, test, and deploy across various environments throughout
the software development lifecycle. However, containerization lacks
isolation from the host operating system (OS). A vulnerability in the
host kernel or OS can impact all containers and let intruders access
everything else in your stack.

Docker containers and Kubernetes deployed on the same IP space
make it possible to attack other containers, spreading the attack.
Further, what appears to be their advantage can also be their downfall.
Container lifespans are short, but they can still be long enough for
an enterprising hacker to get in and gain access to confidential
information. The short lifespan can also challenge container
observability, making it harder to detect the occurrence of attacks after
the container is deleted.

Images and their dependencies are also highly vulnerable, especially
if your DevOps team builds them from untrusted sources, including
images embedded with Bitcoin miners and malware. A container
registry can host thousands of images, and any intrusions or
vulnerabilities within the registry provide a means to compromise
running applications.

https://blog.malwarebytes.com/web-threats/2021/04/cryptomining-containers-caught-coining-cryptocurrency-covertly/

56 Paths to Enterprise Application Security

Container security requires a baseline so you can compare container
environments in their normal state versus those containing anomalies
or attacks. This is challenging to do manually as you may not realize
a container is compromised, because it has a short lifespan, and any
evidence of an attack is destroyed when a container is destroyed.

You can mitigate the chances of your data being undermined by
choosing images with fewer libraries and only dependencies from
trusted bodies. However, any image you manually scan and find
secure may not be secure in the future. New threat data may identify
vulnerabilities in what previously seemed like secure components.

Update your Docker or Kubernetes version and support applications
regularly to ensure access to patches and bug fixes that address older
versions’ vulnerabilities. Use both dynamic and static scanning.

For optimal results, scan early and often. Continuous integration and
continuous deployment (CI/CD) tooling can run a full range of scans
and analyses every time an engineer commits code to a feature branch.
If anything goes wrong, the engineer will get a report so that they can
fix their code immediately. Containers need continuous end-to-end
monitoring to ensure secure use throughout the CI/CD pipeline.

Servers
Servers are prone to various attacks from enterprising hackers,
including security misconfiguration, cross-site scripting, and
unvalidated redirects. A typical example is structured query language
(SQL) injection attacks, where hackers exploit code in a web
application.

The application sends user input to an interpreter as part of a
command or query, which tricks the interpreter into executing
unintended commands and giving unauthorized data access. Hackers
usually do this by tweaking the URL to include malicious commands.
The attack enables hackers to steal and alter information, such as
modifying database data and executing administrator operations on
the database itself.

Another example is broken authentication, which is, effectively, a digital
identity shift where an attacker can impersonate a user’s identity on the
server. Credentials stored in plain text, exposed session IDs, or session
IDs that do not time out or expire, can cause this type of attack.

Fortunately, encrypting server credentials such as hashing, using
Secure Sockets Layer (SSL) encryption, and enforcing strict cookie
control offer protection. Even better, audit regularly and continuously
monitor updates and patches to software, servers, scripts, and
applications.

66 Paths to Enterprise Application Security

Runtime errors occur while a program is running in an interpreter or
after successful compilation. Common examples of user-caused
runtime errors include:

•	 �Inputting string format data when the computer expects an
integer

•	 �Dividing by zero

•	 �Passing an argument that is not in a valid range or valid value
for a method

However, runtime errors may point to a bigger problem. Senior Security
Consultant Fernando Arnaboldi found significant flaws in interpreters
for five popular programming languages, which put applications they
parsed at risk. For example, he noted Python has “undocumented
methods and local environment variables that can be used for OS
command execution.” Software developers may unknowingly include
code in an application that hackers can use in a way the designer
did not foresee. This poses a security risk to applications securely
developed according to guidelines.

Bugs in language runtimes

https://www.blackhat.com/docs/eu-17/materials/eu-17-Arnaboldi-Exposing-Hidden-Exploitable-Behaviors-In-Programming-Languages-Using-Differential-Fuzzing-wp.pdf

76 Paths to Enterprise Application Security

Attackers continually use automated software to seek out code
vulnerabilities as a means to attack. They can exploit any vulnerabilities
within or between code repositories and servers to change and commit
code to the primary, or exploit other resources and launch multiple
application attacks.

Code reviews are critical to writing secure code, as the earlier you find
errors, the faster, easier, and cheaper they are to resolve. In a DevOps
workflow, code reviews should be embedded into the development
process as early as possible. Debugging and testing should also
be integrated throughout the development pipe flow. Developers
can spend up to 75 percent of their time searching for errors and
performance problems using logs and customer reports. Integrated
development environments (IDEs) such as JBuilder and Eclipse can
help with debugging.

The use of static analysis tools can identify problems with code
security. In this instance, code is not running or executed, but the
tool itself executes using the source code as its input data. The
static analysis enables developers to use tooling to discover security
issues early or even in real-time while writing code. The tools scan
as developers write, flagging any security issues in the engineer’s
integrated development environment (IDE) or editor. By looking at data
flow paths through an application, static analysis tools can identify
where code produces unintended outcomes or data is mishandled.
As developers push code directly into production, static code analysis
also validates code quality, decreases future errors, reduces bugs, and
prevents the opening of backdoors for attackers.

Error monitoring platforms can also identify problems as they occur,
creating higher quality software development lifecycles. Errors can be
efficiently triaged and assessed through crash monitoring and real-user
monitoring. Then, developers can remediate these errors to prevent
their reoccurrence.

https://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/

86 Paths to Enterprise Application Security

Bugs and vulnerabilities in build tools like compilers

Academics at Pennsylvania University researched compilers
(specifically the open-source GNU C compiler and the Microsoft C/
C++ compiler that is part of the Microsoft Visual Studio package). They
found that errors in the compilation process can produce vulnerabilities
in executable code. They highlighted two main reasons:

•	 �Undefined behavior in a programming language grants freedom
to the compiler implementation on how to handle that behavior,
which might lead to security vulnerabilities.

•	 �The compiler (correctly) optimizes source code designed for
security purposes in a manner that voids the intended security
guarantee.

The academics discovered vulnerabilities related to standard

Compilers are a valuable feature of an IDE. However, compiled code
may contain bugs that could be exploited. This includes bugs in your
source code, bugs in the compiler and libraries, or undefined behavior
in your source code that the compiler turns into a bug. A single bug can
introduce a security vulnerability in your program or make it compute
the wrong result. Unfortunately, compiler bugs are hard to detect, and
once triggered, can hide in programs for a long time.

This is not a new problem, though. Computer science pioneer Kenneth
Lane Thompson designed the original Unix operating system and
invented the B programming language, the direct predecessor to C.
In 1984, he spoke of “the many ‘chicken and egg’ problems that arise
when compilers are written in their own language” and asserted, “You
can’t trust code that you did not totally create yourself. (Especially code
from companies that employ people like me.) No amount of source-
level verification or scrutiny will protect you from using untrusted code.”

https://arc.aiaa.org/doi/10.2514/1.I010699
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

96 Paths to Enterprise Application Security

vulnerability classes, side-channel attacks, undefined behavior, and
persistent state violations. Some vulnerabilities are more dangerous
than others because they provide either more information or more
control to a potential attacker. Compiler bugs impact application code
and even lead to severe damage, especially when a buggy compiler
collates safety-critical applications.

The researchers found that many compiler optimizations occur in
the front end of the compilation phase and not the optimization
phases as expected. This gives the developer no control over these
transformations, creating security vulnerabilities.

These researchers are not the first to find problems. Researchers at the
University of Utah previously created an open-source tool called Csmith
for stress-testing compilers, static analyzers, and other tools that
process C code. Csmith found bugs in every tool it tested, including
more than 400 previously unknown compiler bugs.

The Pennsylvania University research concludes that developers must
understand low-level source code representation, because the program
may appear to function correctly. Still, the developer’s intent is not
always realized at the machine code level.

Any software developed with compilers should follow a stringent
software development process that includes quality assurance. CI/CD
tests should test the build for vulnerabilities to avoid introducing bugs.
Until compiler writers optimize code in more secure ways, testing is
critical to ensure compiler bugs are found and their impact is mitigated.

http://embed.cs.utah.edu/csmith/

106 Paths to Enterprise Application Security 10

Bugs and configuration errors in provisioning,
infrastructure, and deployment tools

Infrastructure as code (IaC) enables DevOps teams to test applications
in production-like environments early in the development cycle. It
eliminates the need for developers to manually provision and manage
servers, operating systems, database connections, storage, and other
infrastructure elements every time they want to develop, test, or deploy
a software application.

Configuration management tools such as Ansible, Chef, and Puppet
enable developers to automate many cloud deployment and provision
tasks. Instead of manually setting up on-premises and cloud

environments, administrators and architects can automate them with
IaC. They can shift from manual tasks prone to errors, inconsistencies,
and security issues in deployment, to real-time automation that
simplifies large-scale configuration and management.

However, IaC tools are not without their challenges. For example, an
unpatched vulnerability can serve as a threat entry point, enabling
hackers to run code on compromised servers or deploy cryptocurrency
miners.

116 Paths to Enterprise Application Security

Palo Alto Networks’ Unit 42, a team of global threat intelligence
researchers, completed an industry-first study of IaC templates, which
found over 200,000 insecure templates in use. The team also found
that:

•	 �42 percent of CloudFormation Templates (CFT) contain
at least one insecure configuration

•	 �48 percent of AWS S3 buckets do not have server-side
encryption enabled

•	 �55 percent of cloud user-configured S3 buckets
do not have logging enabled

•	 �22 percent of Terraform configuration files contain
at least one insecure configuration

•	 �26 percent of cloud user-configured AWS EC2 instances
have SSH (port 22) exposed to the internet

•	 �17 percent of cloud user-configured AWS security groups
allow all inbound traffic (0.0.0.0/0)

Unit 42 also found that attackers use the default configuration mistakes
implemented by weak or insecure IaC configuration templates to
bypass firewalls, security groups, or VPC policies, unnecessarily
exposing an organization’s cloud environment.

The researchers also note that cloud users, as opposed to cloud
service providers, create the IaC misconfigurations. In the shared
responsibility model, configuring IaC templates belongs entirely to the
cloud user. The challenge for organizations is to consistently enforce
secure IaC configurations across multiple public cloud accounts,
providers, and software development pipelines.

There are many ways a company can improve its tooling security.
Unit 42 researchers strongly recommend thoroughly scanning every
IaC template pulled from a public repository, such as GitHub, for
vulnerabilities as part of the CI/CD pipeline.

Companies can also double down on their efforts to shift security left,
that is, moving it to the earliest point in its development lifecycle. This
encourages software delivery teams to test code right after writing
individual units of code. Shift-left security helps detect bugs and other
security problems early, meaning it can help maintain the delivery
schedule by increasing the speed of the software development lifecycle
in releasing secure, quality applications to market.

Overall, it isn’t easy to secure the invisible and unknown. Teams need
to monitor their public, private, and hybrid clouds to check who is
accessing data and determine if the data is altered or exfiltrated.

https://unit42.paloaltonetworks.com/about-unit-42/

126 Paths to Enterprise Application Security

Bugs and misconfiguration in infrastructure tools

Organizations are rapidly embracing cloud-native technologies — and
for a good reason. These technologies’ advantages include enabling
faster development and deployment and quicker bug fixes and
patches, which lead to faster feature delivery that drives competitive
differentiation.

However, a 2020 StackRox report found that 94 percent of survey
respondents had experienced a security incident in their container
environments over the past 12 months. Sixty-nine percent of
respondents’ organizations had detected a misconfiguration in their
Kubernetes environment, followed by runtime issues at 27 percent, and
vulnerabilities at 24 percent. Forty-four percent of respondents had
to delay deploying an application due to security concerns. Almost a
quarter reported a major vulnerability, 17 percent experienced a runtime
security incident, and 16 percent failed a compliance audit.

Misconfigurations allow a malicious actor to access a container. A
threat actor with high access privileges can potentially enter other
containers housing sensitive information or infect those containers
with malware. Those who download particular images from within the
infected container then get that malware.

Divy’s 2020 Cloud Misconfigurations Report revealed that from 2018 to
2019, the number of records exposed by cloud misconfigurations rose
by 80 percent, as did the total cost to companies associated with those
lost records. Gartner estimates that through 2025, at least 99 percent
of cloud security failures will be the cloud customer’s fault.

Fortunately, there are plenty of robust security controls and protections
available, but you need to fine-tune them for your environment. It is
not only about implementing solutions such as secrets management,
rotating and changing secrets regularly, appropriate access privileges,
and role-based access control (RBAC), but doing so correctly.

https://www.stackrox.com/press-releases/2020/02/stackrox-report-reveals-that-container-and-kubernetes-security-concerns-are-inhibiting-business-innovation/
https://divvycloud.com/misconfigurations-report-2020/
https://www.gartner.com/smarterwithgartner/is-the-cloud-secure/

136 Paths to Enterprise Application Security

For example, you should authorize secrets access according to an
appropriate access management policy that restricts access rights
according to pertinent roles, time, and tasks. However, it is still possible
for the secrets provider to grant an imposter access to secrets.
Multifactor authentication is useful in such a scenario because it
prevents the secrets provider from giving the secret to an imposter,
effectively limiting access to trusted containers.

Good configuration management requires ongoing vigilance. The threat
vector is forever changing as attackers increase their abilities to access
structural vulnerabilities. A central management tool makes it easy to
manage audits, access control, and secrets. Automate vulnerability
scanning and patching to stay on top of security challenges.

146 Paths to Enterprise Application Security

Exposed secrets

Developers handle more sensitive information than ever before
as infrastructure secrets multiply throughout cloud and service
providers. A secret contains a small amount of sensitive data such as
a password, token, or key. Applications, scripts, and other non-human
identities use secrets and other credentials to communicate with
other applications and tools, and securely access databases and other
sensitive resources. Incorrectly implemented secrets offer attackers an
easy target.

Fortunately, secrets management provides a way to control digital
authentication credentials. Manage secrets according to best security
practices such as credential rotation, time and activity-limited access,
and auditing.

It is tempting to lean on manual secrets management steps such as a
registry of passwords and keys across an organization. However, this is
time-consuming and prone to human error.

Also, many DevOps teams use different toolsets for different phases
of the development process. These toolsets may differ in terms of
security maturity and lack interoperability with other tools. Teams
may also fail to aggregate security policies and audit data, leading to
security silos and inconsistencies across the workflow.

With a CI/CD platform like CircleCI, you can secure your pipeline by
centralizing production keys across your organization. An effective
secrets management strategy should integrate with every tool in
the DevOps workflow and across cloud providers. Good secrets
management provides granular access control across your ecosystem
to determine which access level people and services have.

CircleCI’s automation provides a real-time view of your secrets,
including audit trails and the ability to manage, rotate, and monitor app
credentials.

https://kubernetes.io/docs/concepts/configuration/secret/

156 Paths to Enterprise Application Security

Conclusion

The industry continually discovers vulnerabilities in software libraries,
software packages, operating systems, and infrastructure. Vulnerability
management requires continuous scanning, classifying, prioritizing, and
patching these software vulnerabilities.

While developers can perform these tasks manually, this is prone
to error. Vulnerability management benefits from automation and
optimization. Human error is the most cited cause of data breaches
and hacks, especially in complex environments. Also, there is a
shortage of skilled, trained developers when it comes to DevOps,
containers, and Kubernetes, increasing the chance of human error.

Security needs to shift left and be embedded into the DevOps workflow
as early as possible, then enforced across the entire software
development lifecycle. Otherwise, it risks delaying production and
inhibiting business acceleration and innovation.

A staggering amount of tools and resources can help organizations
through the enterprise application security minefield. Still, all tools and
platforms must talk to each other and avoid creating security silos.

Further, developers must be confident that their tools and resources
continually update against the latest security threats.

DevOps teams must understand the threats that can attack their
pipeline and develop best practices for deploying a CI/CD pipeline.
Securing the pipeline configuration is also essential.

CircleCI protects sensitive information across your delivery pipeline
from source code to environment variables, the runtime environment,
and artifacts. Also, CircleCI orbs enable you to easily integrate third-
party tools and services to secure your pipeline with just a few code
lines.

Enterprises cannot take these key application security risks lightly,
but the risks do not have to be showstoppers. With a bit of work,
enterprises can use CI/CD to automatically detect and mitigate all
these threats in a scalable manner.

To automate your security, consider CircleCI’s CI/CD automation
software with built-in security.

https://circleci.com/orbs/
https://circleci.com/
https://circleci.com/

