
The 2022 State of
Software Delivery
by Ron Powell

20
22

Software delivery has never been more critical to the success of

business in every industry. It’s also never been more complex.

Expectations for delivering high-quality software incredibly fast have

skyrocketed. Yesterday’s most exceptional product experiences

are expected today to be more beautiful, intuitive, powerful, and

affordable. But the landscape of tools, platforms, and architectures is

constantly evolving. With this rapid pace of change and the growing

challenges of complexity, how can engineering teams not only

succeed but beat out the competition?

Executive Summary

The 2022 State of Software Delivery Report represents the largest

collection and evaluation of developer engineering productivity data

in the world: over two years of data from over a quarter of a billion

workflows, representing almost 50,000 organizations from more than

100 countries, building over a quarter of a million projects on the

CircleCI platform. Our research team examines this data each year

to gain insight into the DevOps practices used by software teams

globally.

2

http://circleci.com/

The data shows that the most successful engineering teams routinely

meet these 4 benchmarks:

 • They prioritize being in a state of deploy-readiness, rather than
the number of workflows run

 • Their workflow Durations are between five to ten minutes on
average

 • They recover from any failed runs by fixing or reverting in under
an hour

 • Their Success Rates are above 90% for the default branch of
their application

We’ve been publishing this research for three years, and we’re pleased

to say that more teams than ever before are hitting these benchmarks.

This means that more teams have identified that delivering software

successfully at high velocity is a competitive differentiator for their

product, and have prioritized the key components of hitting this goal.

By hitting these benchmarks, these high achieving teams are getting

maximum value from their software delivery pipelines.

To achieve top-performing status costs time and money but it’s clear

that more organizations are realizing that it’s worth the investment.

Business leaders that outfit their teams with the most performant

and powerful tools allow their software teams to be engines of

innovation, unlocking new ways for their entire company to operate

more effectively and opportunities to get better products to customers

sooner.

3

https://www2.circleci.com/DevEx.html
https://www2.circleci.com/DevEx.html

Key Findings

Our recommended baseline metrics continue
to define industry standards.

Top delivery teams continue to show key similarities on our platform.

Every organization is different and many have business-specific

reasons for choosing certain benchmarks, but the teams hitting our

recommended baseline metrics are among the highest-performing

each year.

 Delivering software successfully with high engineering velocity

remains the number one goal for teams on the CircleCI platform.

Those that meet these baseline benchmarks get incredible value from

their software delivery pipelines, and more teams are meeting them

and entering the elite tier.

4

As your software product matures, your
pipelines will run for longer Durations on
average.

Teams on CircleCI are running more advanced pipelines than ever

before: we’re seeing workflows that include sophisticated test suites

and we’re seeing growth in the use of deployment tools and technology

year-over-year. This indicates that our users are becoming experienced

enough at Continuous Integration to implement Continuous Delivery

and Deployment scenarios as their business demands, signaling that

the DevOps industry is growing and maturing overall.

The goal is not DevOps maturity alone, it’s also product maturity.

Achieving high performance and product maturity are only possible

with code that is well-tested in the cloud, and that means your

pipelines will take longer to complete. There’s an inflection point to

consider where additional Duration starts to impede progress. As your

Duration increases, so does your Mean Time to Recovery (MTTR).

Small teams can compete with the enterprise
by prioritizing test-driven development

Typically, early stage organizations with small engineering teams do

not have the testing in place to properly mitigate failure quickly. They

try to solve failures by having their engineers join forces to resolve

problems together. However, due to their size, they are not able to

consistently commit many resources to recovery. This is particularly

challenging during the end-of-year holiday season when demand for

software products and services is often at its peak, at the same time

that staff want to be home with their families. Major market swings

happen throughout the year with similar impacts to your organization:

a high demand for your products and services at a time when staff

need time off.

In our 2020 report, we saw that teams were able to maintain high

velocity and average recovery times throughout the onset and then

the new reality of a global pandemic. The teams most adept at CI,

who could innovate with confidence knowing that rich output would

accompany any error, were able to continue to innovate throughout,

despite being faced with the same difficulties as all developer teams

around the world. Similar impacts to our teams happen every year

around the holidays and again, teams most adept at CI are not slowed

down by those challenges.

5

When engineering teams at early-stage companies achieve maximum

benefit from their CI/CD pipelines, they can still gain a competitive

advantage, whether it be during the seasonality of the business cycles

or during large-scale impacts to the market as a whole.

Practices like test-driven development (TDD), which includes extensive

testing, quality checks, and systems that prevent bad code from being

put into production, act as a fail-safe when headcount is low. Small

teams can compete with larger ones if they prioritize TDD because

they can confidently rely on their tooling during seasonal fluctuations

and times of uncertainty.

To confidently rely on your tooling, it is
essential to create an optimal team structure
and culture.

Our four recommended baseline metrics individually measure

important aspects of software delivery efficiency but collectively, they

inform team dynamics. For example, Throughput isn’t the measure of a

single developer’s productivity; it’s all the changes to the product made

by the whole team. Similarly, Success Rate is not measured in terms of

one developer, but the rate at which successful changes are made by

the entire team.

To ensure team success, and therefore software delivery success,

we need to help our developers to stay in flow. That means aiming

for short workflow Durations so they provide signals about the most

recent changes as quickly as possible. It also means scheduling

meetings at times that don’t conflict with peak productivity hours.

While it may seem convenient to have a meeting when most of your

team is online, scheduling meetings during this hour may not be the

best use of your developer’s time. Asynchronous communication is

key to keeping global teams aligned on project progress.

Keeping developers in flow is a priority for the highest-performing

teams. It also means having the right team size to achieve your

objectives while avoiding burnout, and then, building extensive

testing into your DevOps practice so you can rely on your tools with

confidence.

6

Introduction

20 years ago, if you ran into an issue with your software, your team

could probably fix the problem because the team controlled the entire

codebase. In 2022, even the most gifted team of engineers likely

cannot fix many of the issues that arise because of the magnitude of

components and moving parts that go into the products they build.

Managing this complexity not only requires staying on top of all of your

dependencies but your security and stability as well.

What do high-performing engineering
teams look like?

In 2021, the world continued to face daunting uncertainties. But as in

2020, the DevOps and CI/CD industries continued to experience hyper-

growth. Why?

Microservices and dependencies have exploded in recent years

making software development infinitely more complex. Today, very

few applications are built by in-house engineers writing custom code.

Instead, apps are stitched together by combining pre-existing libraries

collected from across the internet.

7

The most effective way to do this is by practicing CI/CD. Software

teams that are among the highest performing are the ones that

intentionally work to get the most value out of their CI/CD pipeline. As

a result, they experience fewer bugs, defects, and setbacks, and they’re

able to get products into the hands of customers sooner.

But how do you get there in practice?

In our 2020 report, we showed you the baseline metrics your team

needs to achieve to be among the top-performing software delivery

teams in the world. We also highlighted that high-performing teams

must be resilient, which means having the right size engineering team

for your goals, supporting one another, and being flexible.

This year, we’ll cover the basic metrics again but we’ll also expand on

them by providing insight into how your team can achieve them. Using

our analysis of the data of tens of thousands of teams on CircleCI,

we’ll detail some of the systems, tools, team processes, structures,

and everyday practices that empower engineering teams to go from

good to great.

History of Continuous Integration

As software development became more complex over time, it became

advantageous to integrate code early and often to ensure that all

components of an application work together successfully.

Continuous Integration was born out of the Agile method of

developing software, which prioritizes being responsive to change,

optimizing for shorter delivery cycles, and minimizing risk by breaking

work into smaller chunks. Agile processes helped teams become more

comfortable with failure because they were testing and delivering

software in smaller bits more frequently, enabling them to catch more

bugs at earlier stages and prevent catastrophes.

Adding integration into the build pipeline meant that development

and operations teams could create testing suites that run on every

change to the codebase. Extensive automated testing allowed

teams to innovate quickly because those tests return a high degree

of confidence. When enabled through CI, proper test coverage gives

teams the ability to deploy at will, and release working software any

time with little effort.

8

https://circleci.com/resources/2020-state-of-software-delivery/
https://circleci.com/continuous-integration/

How do you give yourself
an advantage?

CircleCI is in a unique position as the world’s largest networked CI/CD

provider to access real data around how software is developed. We

looked at over a quarter of a billion workflows, commit by commit, to

see how teams were building and deploying software in practice.

Today, almost every company creates and deploys a software product.

To get ahead of your competition, quality delivery, with speed and at

scale, is the key to creating a competitive advantage. CI/CD pipelines

are table-stakes for organizations that want to create differentiation

from their competitors and deliver digital products as fast as the

market demands.

Our goal is to answer these questions: What does a high-performing

team really look like? What defines their success?

9

To avoid confusion, let’s cover a few key terms that will be important

as we define the baseline metrics for engineering teams to target for

delivering software at scale.

Duration

is the length of time it takes for a workflow to run.

Throughput

is the average number of workflow runs per day.

Mean Time to Recovery

is the average time between a workflow’s failure and its next

success.

Success Rate

is the number of successful runs divided by the total number of

runs over a period of time.

Continuous Integration (CI)

The automated building and testing of your application on every

new commit.

Continuous Delivery (CD)

A state where your application is always ready to be deployed. A

manual step is required to actually deploy the application.

Continuous Deployment

The automation of building, testing, and deploying. If all tests

pass, every new commit will push new code through the entire

development pipeline to production with no manual intervention.

Measuring and then optimizing Duration, Throughput, Mean Time to

Recovery, and Success Rate gives teams a tremendous advantage

over organizations that are not as far along their path to DevOps

maturity and not yet monitoring these key metrics.

10

1.43 times per dayTHROUGHPUT As often as your
business requires—not a
function of your tooling

3.7 minutesDURATION

2022 MEDIAN

VALUES

10 minutes

BENCHMARK

73.6 minutesTTR < 60 minutes

Average was 77%
on default

SUCCESS RATE Average should be
+90% on default

11

What does each metric reveal about how
teams are improving their software delivery?

Duration

Duration is the length of time it takes for

a workflow to run. What is the appropriate

length of time for a fast feedback cycle?

So, what length of Duration should your team be targeting? Our

industry-leading benchmark for Duration is 10 minutes because it’s

essential to maximize the amount of information you can get from

your pipeline while still moving as quickly as possible. 10 minutes

is where we feel developers can move fast without losing focus and

will benefit from the volume of information generated through their

CI pipelines — it’s the optimal time for fast feedback, robust data, and

speed.

In fact, a Duration benchmark of 10 minutes is a well-accepted

industry standard that hasn’t changed in 15 years. In his 2007 book,

“Continuous Integration: Improving Software Quality and Reducing

Risk,” Paul M. Duvall and his co-authors recommend 10 minutes as

Nothing is more important in CI than fast feedback but rapid

awareness of a workflow’s failure or success is not the only

consideration. Developers also need specific information from their

failed builds. You cannot push a fix without first identifying a solution

from the information provided by the failure, making a change, and

then running a complete workflow to success. Writing rigorous tests

for your software will ensure that you’ll get exactly the information you

need at the crucial moment.
12

the ideal pipeline Duration because the optimal volume of information

you could generate for your pipeline took 10 minutes to complete on

average. This is still true today but the volume of information that

can be obtained during today’s 10-minute pipeline far exceeds what

could’ve been imagined by Duvall and his co-authors in 2007.

From December 2019, the earliest time observed for this year’s

report, through September 2021, the last month observed, Durations

increased on average for all teams on CircleCI. This makes sense.

As more teams mature their applications and increase their DevOps

maturity on CircleCI, they include more-rigorous testing and increased

use of third-party tools. This results in workflows taking longer to

complete.

The average Duration for September 2021, the last month observed,

came in between 12-13 minutes, which is just above our Duration

benchmark of 10 minutes. The median was only four minutes, which

is quite short, but not necessarily an advantage. If your pipelines are

averaging 4 minutes, this likely means there’s ample room to include

more information-generating processes such as adding tests to your

test suites, adding third-party tools for security or compliance scans,

or measuring code coverage.

What can your team do to achieve an average Duration time of 10

minutes? Remember, an ideal Duration is one that allows you to gain

maximum information in minimum time. The lists below provide tips to

gain both efficiency and richness of data in your pipeline runs.

TO INCREASE THE EFFICIENCY OF YOUR RUNS AND REDUCE

YOUR DURATION:

 • Use test splitting to split tests and take advantage of
parallelism. Splitting tests by timing data is particularly efficient.

 • Use Docker images made specifically for CI. Fast spin-up of
lean, deterministic images for your testing environment saves
you time.

 • Use caching strategies that allow you to reuse existing data
from previous builds and workflows.

 • Use the optimal size machine to run your workflow. Larger jobs
benefit from more compute and run faster on larger instances.

13

TO INCREASE THE RICHNESS AND VALUE OF YOUR TEST DATA:

 • Adding tests to your unit testing, integration testing, UI testing, and end-to-end
testing layers can all increase test coverage and test comprehensiveness across
your applications.

 • Testing across the layers of your application is still not robust enough to get
your service into production without error. To build, test, and deploy your product,
you must also test how your service interacts with services outside of your
organization. An additional layer of testing in a complete DevOps model involves
testing the responsiveness and availability of these services too.

 • Use security scanning tools to perform application security tests to find
vulnerabilities. Before you ship to production, these scans decrease the chance of
releasing vulnerable software to your users.

Every engineering team should aim to get the maximum benefit from their CI/CD

pipelines, which means moving at high velocity along with the ability to recover quickly.

With more code continually deployed and pipelines that are automated all the way

through to production, it is absolutely essential to be able to mitigate poor outcomes.

Again, achieving DevOps maturity and product maturity means your pipelines will

take longer than the bare minimum to complete, which is a good sign that your team’s

practices are maturing.

Software quality is one of the most difficult
elements to quantify in managing engineering
teams. At StackHawk, we’ve started tracking
Change Failure Rate, which is the percentage of
changes we deploy to production that contains
a customer-impacting bug or issue, or which
fail any production verification tests. This
metric has helped us have visibility into our
software quality while continuing to embrace
a continuous delivery model and move toward
smaller, more frequent deploys. Combined with
a robust set of automated tests, this approach
gives us confidence that we can deliver
features quickly to our customers, while still
holding ourselves accountable for delivering
high-quality, reliable software.”

Jeremy Goldsmith
Head of Engineering, Stackhawk

14

Mean Time to Recovery

Mean Time to Recovery is the average time between a

pipeline’s failure and its next success. It is the most important

metric on the list. The ability of your team to recover as

quickly as possible when an update fails, time and time again,

is the ultimate goal of Agile development teams.

I’m happy to see CircleCI’s emphasis on TTR,
as Thoughtworks has long preached that
it’s impossible to ensure a steady delivery
cadence if the team isn’t paying attention to
the build health and that a red build should
be like pulling the proverbial Andon cord. We
often find that the most robust — and certainly
the fastest — solution to a broken build is to
simply revert the offending commit, allowing
troubleshooting to happen in a way that doesn’t
interfere with the rest of the team. You can’t
know whether a new build works or not unless
you’re starting from a known good position,
which means you should never allow a new
build to start on a red build unless it’s explicitly
designed to fix it, and it’s hard to imagine
a commit more likely to fix a broken build
than simply reverting the one that broke it to
begin with. Often the biggest impediment to
rollbacks is team culture: it’s critical to create
psychological safety so team members feel
comfortable reverting someone else’s commit
to restore the health of the build and unblock
the rest of the team.”

Brandon Byars
Head of Technology for North America,
Thoughtworks

The more robust testing and corresponding output you have, the faster it is to resolve

issues and fix errors introduced to your codebase. Because Mean Time to Recovery

(MTTR) improves with more comprehensive test coverage, this metric can be used as a

proxy for how well-tested your application is — although it’s important to note that error

messaging plays a vital role and should be called out specifically.

The shortest that your MTTR can be is equal to your Duration. For example, if a

workflow run resulted in a failed state and a developer immediately knew the solution,

immediately made a change, and immediately pushed it to their shared repository, the

full Duration of a successful workflow run would have to complete before the project

can return to a green state.

In two years of data, we’ve observed that Mean Time to Recovery (MTTR) is impacted

most by the end of year holidays. This indicates that annual cycles in the market and

the predictable rhythm of the seasons create more powerful impacts on engineering

productivity than global phenomena such as a pandemic.

15

MTTR increases across the board for the end-of-year holidays, putting

small developer teams at a particular disadvantage. This disadvantage

is due in large part to reductions in staff while organizations

accommodate a healthy work-life balance and developers take time

off. Fewer team members available to debug and fix problems result

in longer recovery times over the holidays. It’s no wonder that many

teams decide to code freeze during this time.

What would it take to give your team time off to relax with their

loved ones over the holidays, while still maintaining productivity

and avoiding long recovery times? Tests! Investing in your product

by building out your test suite, increasing your test coverage, and

drafting detailed error responses involves some upfront investment

and will lead to longer workflow Durations, but it will empower a

smaller team of developers to continue work while their colleagues are

offline, effectively ending code freeze, and will reduce the amount of

downtime when errors do occur.

This end-of-year period is also when hackers are most likely to take

advantage of perceived weaknesses and attempt entry into your

systems. Security automation safeguards against this because it

means that no single developer is responsible for protecting the entire

system — it helps teams avoid hero culture. After all, hero culture is not

so useful when the hero is on vacation.

Interestingly, the tools and practices that the most productive

engineering teams have in place to buffer market fluctuations in real-

time are the same ones that can enable small organizations and small

teams to stay competitive and productive during annual downtime

cycles. Again, it is all about the tests.

Your team’s ability to resolve issues in a timely manner, a regular part

of software development, should never be a deciding factor in whether

or not to deliver additional value to your customers. Your software

team should be able to respond easily to any changes to your business

or in the market by releasing new features, updating old ones, or

moving into new audiences no matter what time of year it is or the

state of the global market.

16

Automation itself is the first step to improving MTTR. Automation

provides you with fast pipelines. But the ability to deliver bad

code faster is not a benefit. Teams can only realize the benefits of

automation with a robust feedback loop for mitigating error. Without

the valuable signal from robust testing created by successful and

failing runs of your workflow, you lack the ability to resolve problems

when they inevitably occur.

If teams were to employ better, automated testing practices, they

could be even better prepared, not only to handle big ripples in the

market like covid but also prevent this dramatic holiday slump each

year. It is possible for small companies to compete with larger ones

if they first prioritize TDD so they can confidently rely on their tooling

during seasonal fluctuations and times of change and uncertainty.

WHAT ARE SOME THINGS YOU CAN DO TO LOWER YOUR MTTR?

 • Duration is the most important factor to consider when it comes
to MTTR so to optimize TTR, you must first optimize Duration.

 • Using tooling that supports the rapid identification of failure
information through the UI and through messaging like Twilio,
Slack, and Pagerduty allows you to be notified as soon as
possible when a failure occurs.

 • Writing tests that include expert error reporting will help you
quickly identify what the problem is when you go to fix it.

 • Debug on the remote machine that fails. The ability to SSH
(Secure Shell Protocol) onto the failed machine of a workflow is
massively helpful for an engineer who is still looking for clues as
to why an error occurred. Rich, robust, and verbose log output is

useful without access to the remote machine.

Remember, one of the most important parts of software delivery is

shortening the time between when a defect is introduced, discovered,

and then fixed. There is no such thing as error-free software

development. We must assume that failure will happen and be

prepared to address it as quickly as possible.

17

Throughput

Throughput is the average number of workflow

runs per day. A workflow is triggered when a

developer makes an update to the codebase

in a shared repository. A push to your version

organization is no longer blocked by waiting for manual quality assurance

checks. With a fully automated software delivery pipeline, it is up to you

how frequently (and when) updates are delivered to your end-users.

Measuring your baseline Throughput and then monitoring for fluctuations

will tell you more about the health of your development pipeline than

aiming for an arbitrary Throughput number or comparing your stat

to others. A particular number of deploys per day is not the goal but

continuous validation of your codebase via your pipeline is.

HOW CAN YOUR TEAM ACHIEVE OPTIMAL THROUGHPUT?

 • Again, when it comes to Throughput, it is more valuable for

organizations to see their own changes and progress week-

over-week than it is to compare to industry standards. Once

your development patterns have been decided, your Throughput

baseline can be measured and then observed for health and

efficiency.

 • If increasing Throughput is a desire for your team, you should

prioritize lean, Agile software development patterns that involve

small, incremental changes to projects with a full suite of

automated testing that runs on every commit. Testing removes the

threat of changes introducing errors. By testing well and pushing

small changes often, teams can innovate on their project knowing

that any undesirable impact from a change can be investigated and

mitigated quickly and with ease.

control system (VCS) triggers a CI pipeline that runs your workflow.

Large commits are pushed less often, so a lower Throughput may

indicate that your commits are quite large. When it comes to the size of

your commits, you want changes to your codebase to be small enough

to debug quickly and easily, but large enough to reflect a meaningful

update to your project. If your goal is to increase your Throughput,

consider making smaller commits more often.

Throughput varies greatly depending on the needs of your business.

Throughput is also dependent on Duration and MTTR. For example,

if my pipeline takes eight hours to run (Duration), I can only complete

three workflows per 24-hour period (Throughput).

On CircleCI, 50% of workflows in our data set were run less than once

per day (0.7 times per day on average). However, the 95th percentile

includes workflows that were run over 35 times per day or about once

every 45 minutes throughout a 24-hour period.

Your software delivery cadence should be dependent on the software

your team is building and on your business needs. Making changes

to your project with an automated testing workflow means your
18

Success Rate

Success Rate is the number of passing runs divided by the total

number of runs over a period of time. The Success Rate for any

given project is not particularly interesting without knowing the

development patterns that define your team’s use of a version

Jez Humble recently tweeted that CI/CD is
about more than ‘taking whatever [stuff] you
have in version control and shipping it into
prod as fast as possible so you can test in
prod.’ At Katalon, we believe that TestOps
is a critical element of effective software
delivery. Increasing Throughput only matters
if your software remains deploy-ready. Test
automation can help you ensure that is
the case. However, you can only keep your
workflow Duration down if your tests are run
efficiently — taking advantage of intelligent
test selection and parallel test execution. Mean
Time to Recovery can be reduced when you
are able to identify and diagnose test failures
quickly. Ultimately your success rate will
depend on being able to maintain effective test
suites as your software grows and changes.
CircleCI makes integrating testing into the
CI workflow easy and enables organizations
to ensure they are doing more than shipping
questionable quality quickly.”

Coty Rosenblath
CTO, Katalon

control system (VCS). These patterns, or Git-flow models, organize the work that teams

perform on a project onto branches off of the main branch where the production code

is hosted. This means that a topic or feature branch of a project will likely have a lower

Success Rate that reflects increased innovation and experimentation, while the main

branch that holds the production code will likely have a very high Success Rate that

reflects stability.

On a feature development branch, failed builds are desirable. That means that

information is being generated by the workflow and the feedback loop is working. The

more information that is generated from a run, the easier it is to debug failures keeping

the Mean Time to Recovery low.

Failed builds on the main branch are not completely undesirable. It is inevitable that

there will be failed builds on the main branch. You need to know whether the information

that you generate from a failed build on the main branch is sufficient to keep your

time to recovery on this branch low. The Success Rate of the main branch needs to be

actively monitored, and if it is not high enough (we suggest 90% or above), then it should

be addressed through increased testing.

19

The significance of Success Rate on topic or feature branches can

be variable, depending on the structure and size of your team, and

the projects they’re working on. The larger the team working on the

same topic branches, the more important it is to keep them green

so that a red state is not blocking others from development. This is

accomplished through robust testing.

The ability to measure the Success Rate of your current workflows will

be essential in establishing targets for your team. Remember, failed

builds are not a bad thing, especially if you are getting a fast, valuable

feedback signal, and your team can resolve issues quickly

HOW CAN YOU ACHIEVE AN OPTIMAL SUCCESS RATE?

 • Success Rate should always be high on the primary branch of
your service. Choosing a Git-flow model such as short-lived
feature branch development or long-lived development branches
that allow your team to innovate without polluting the primary
branch will keep your product stable and deployable. Feature
branches do not need to have as high of a Success Rate as the
primary branch, as it is expected that the changes involved in
creating new features will result in failure.

 • Feature branches can have lower Success Rates without
negatively affecting the product or teams working on other
branches. It’s important to monitor Success Rate on these
branches along with MTTR. Low success accompanied by long
MTTR is a sign that your testing output is not sufficient for
debugging and resolving issues quickly.

The bottom line is that the four metrics together provide a constant

feedback loop to give you better visibility into your software

development pipeline. Remember, the goal isn’t to make updates to

your application; the goal is to constantly innovate on your software

while preventing the introduction of faulty changes.

The goal isn’t to make updates
to your application; the goal is
to constantly innovate on your
software while preventing the
introduction of faulty changes.

20

https://circleci.com/blog/introducing-test-insights-with-flaky-test-detection/

What does an optimal team structure
and culture look like?

To improve your software delivery metrics, it is essential to prioritize

team structure and culture. While the ideal team structure and culture

will vary depending on your goals as an organization, making sure your

developers stay in flow is key to ensuring they stay as productive as

possible. That means scheduling meetings at times that don’t conflict

with peak productivity hours. The peak time of work on the CircleCI

platform is done between 6 a.m. and 7 a.m. PT (9 a.m. and 10 a.m.

ET) on Wednesdays, meaning that’s when most developers are online

building software.

Identifying the right number of people for your team is also essential.

Three out of four of our key metrics show a correlation between larger

team size and better engineering performance. While the ideal team

size differs based on your objectives, the scope of your responsibilities,

as well as other variables, our data shows that the best place to aim is

between 5 and 20 code contributors. A larger team is also the best way

to avoid burnout.

21

Compared to last year’s data, there has not been a large increase in evening or weekend

workflows, which could indicate that teams are prioritizing a culture that does not

overwork their engineers. Burnout can be one of the biggest productivity killers, which

translates to a loss of revenue.

Building a team for optimal flow gives you the confidence to rely on your tooling and

improve your overall software delivery metrics. Once your team has built extensive tests

into your CI/CD practice, the signals you get are more meaningful. A failed signal is not

as useful without extensive testing in place.

Using CI correctly means solving the problem of putting bad code into production. As

long as quality software relies on humans to write it, we need to develop practices that

support those team members to do their best work and support their own wellbeing.

We need incredibly detailed structures and built-out practices so developers can be

successful without burning out along the way.

In this year’s analysis, we looked at the time
of day that contains the largest volume of work
performed on our platform.

There is no one time zone that includes
enough developers to produce a single peak
of productivity. This speaks to the global
footprint of modern application development
teams. The time when there are more
developers online making changes to their
software than any other time during the day is
15:00 UTC or 7:00 a.m. PT. This time is late in
the day for Europe, the middle of the workday
for the U.S. East Coast, and early morning on
the U.S. West Coast.

22

What does an elite team look like?

Year after year, we’ve provided our analysis of the four metrics, as

measured on our platform through millions of pipelines run. It makes

sense to think of optimizing strategies for them individually because

different processes may be needed to improve each one. But what

does an optimized combination of these metrics look like and which

might be the best ones to choose for your team?

At the heart of our quest for software development velocity is both

speed and quality. Quality means that we are not pushing updates to

our products that result in undesired behavior for our users. Speed

means that we can do this not just quickly, but consistently.

What do speed and quality look like when it comes to these metrics?

The most essential thing to aim for is an MTTR that is as close to your

average Duration as possible.

Robust test coverage and helpful, verbose error reporting take time,

but those who put the time in upfront reap the benefit of innovation

with confidence. Prioritizing these practices allow teams to be

creative, challenge themselves in an environment that allows them to

fail, and respond to failure with confidence.

As open source projects have CI configuration files that are viewable to

the public, we want to share some examples of teams that exemplify

optimized performance metrics. These three OSS projects on CircleCI

are meeting the ideal combination metrics of elite teams. They have

Durations between 10 and 11 minutes, MTTRs well under an hour, and

Throughputs from 2.4 times per day to almost 40.

Take a look at their CircleCI configuration files (the config.yml file in

the .circleci folder), and note what they’re doing.
23

Armada
Armada is using one of CircleCI’s in-house-developed Docker images for Go.
CircleCI builds these images to be the fastest and most deterministic images
available. They are designed specifically for CI.

1.43 times

per day

THROUGHPUT As often as
your business
requires—not a
function of your

tooling

3.7 minutesDURATION

2022 MEDIAN

VALUES

10 minutes

BENCHMARK

73.6 minutesMTTR < 60 minutes

Average was
77% on default

SUCCESS RATE Average should be
+90% on default

DURATION

MTTR

10 m
49 s

2.929 m
8 s 60%

103%

less than
median

over the
median

THROUGHPUT

24

https://github.com/G-Research/armada
https://github.com/G-Research/armada

THROUGHPUT

DURATION

MTTR

Bolt Checkout Plugin for Magento 2
Bolt also uses CircleCI-developed orbs to alert developers of the build status of
the projects that they follow. In addition, Bolt is using a community-developed
orb that includes a number of helpful commands. Using these commands, their
team is able to create custom workflows that allow for running specific tests
depending on which part of the project changed. This keeps the average Duration
of a workflow for this project low, while still delivering the relevant testing output.

The Big Give Donate Frontend
The Big Give takes advantage of two different notification services in their
workflow. The Slack orb and the Jira orb are used to keep their teams
continuously updated on the status of projects. Early alert is key to keeping
MTTR as low as possible.

10 m
44 s

The Big Give builds and maintains several web apps and microservices to support
match-funded charity campaigns at scale. As a tiny technical team, automation is
the only way we could achieve this while maintaining high quality, and Continuous
Integration and Delivery plays a crucial role. Motivations for the updated web
platform we launched in 2019 include prioritizing security and stability and reducing
avoidable custom code. But with Continuous Integration, we’ve also increasingly
been able to focus on getting improved experiences to our charities, donors, and
champion funders as soon as possible.

Our platform is now flexible enough to respond to new funding needs without code
changes. Keeping our CI pipelines in a good place also allows us to be pragmatic
and to quickly and safely adapt our apps if needed, even when things change mid-
sprint. This has helped us to accommodate new requirements in response to the
unpredictable times facing our charities and partners in recent months.”

— Noel Light-Hilary, Tech Lead at The Big Give

“ With custom compute, my team builds, tests, and deploys applications that have
unique system requirements without the need to also manage hardware. Scaling
concurrency has also been huge for us because it makes our workflows insanely
fast. The net effect of our optimized pipelines is not only fewer master breaks
and triple the tests, but much faster builds. What used to take as long as two
hours now takes about 30 minutes without increasing resources. So our costs
are still the same but the builds take a third of the time and we run more tests.
We’re able to ship more reliable code without the overhead.”

— Roopak Venkatakrishnan, Engineering Manager at Bolt

“

2.428 m
31 s 61%

65%

less than
median

over the
median

THROUGHPUT

DURATION

MTTR

10 m
23 s

38.947 m
20 s 36%

2618%

less than
median

over the
median

25

https://github.com/BoltApp/bolt-magento2
https://github.com/thebiggive/donate-frontend
https://github.com/BoltApp/bolt-magento2
https://github.com/thebiggive/donate-frontend

The move to more frequent deploys

Kubernetes is an open-source system for automating deployment,

scaling, and management of containerized applications. It’s used for

resource allocation and traffic management for cloud applications and

microservices.

For Kubernetes (K8s) to be useful to your team’s DevOps practice,

there are a few requirements:

 • You’re willing to operate more than one virtual machine

 • You’re able to assign people to do configuration and
maintenance of Kubernetes

 • You’re managing more than a single service

 • You need to automate (as much as possible) a mostly
homogenous service deployment

 • You need to be cloud (or hosting) provider-agnostic

26

The list of requirements needed to successfully deploy K8s is not

trivial. Therefore, it’s not surprising that the majority of organizations

using K8s in our data are large, enterprise-sized organizations. The

smaller orgs that find themselves in a position where K8s make sense

in their stack do not sway the data. These orgs exhibit the same

behavior: longer Duration, shorter MTTR, and higher Throughput.

When we looked at projects that were using Kubernetes, we saw that

on average, those projects had longer Duration (46% longer at the 50th

percentile), lower MTTR (46% lower), higher Throughput (57% higher),

and similar Success Rate (about 77% success on the default branch)

as those without K8s. We also see an increase in projects using K8s,

year-over-year. What would explain these signals?

More companies adopting Kubernetes aligns with several industry

trends. First, many organizations are migrating their monolithic

applications to microservices. Second, organizations are automating

their software pipelines beyond building, testing, and leaving artifacts

in a deployable state — a situation that would have been considered

advanced in the past. Finally, more and more teams are using

Continuous Integration to deliver updated products all the way to their

consumer’s hands at breakneck speeds.

To get your updates into the hands of your users as fast as possible,

all of the quality checks that were once manual, tedious processes

need to be automated. This scenario puts a tremendous amount

of pressure on the testing suite created for the application. Robust

testing takes longer to do, therefore, pipelines using K8s take longer

on average, but the longer Duration is made up for by a shorter MTTR,

making the investment worth it.

The use of K8s also involves cloud service providers. It takes time for

these workflows to connect to and communicate with these services,

spin up new products in the cloud, and move artifacts from one place

to another. Connecting to these services increases Duration, but that

increase does not aid engineers in identifying errors and pushing

fixes. Interacting with these services introduces a host of new testable

scenarios. The output of these additional tests will be critical in

determining a fast resolution to a failed build signal.

Organizations making the investment into automated testing,

automated infrastructure deployment, and wholesale adoption of the

DevOps paradigm from commit to deploy, are reaping exceptional

benefits. Increased Throughput is made possible by maintaining low

MTTR. It means keeping the developers on these projects building new

things instead of chasing down bugs without clear signals as to what

went wrong, where, and how to find a solution — all things that come

with robust testing.

27

https://www2.circleci.com/forrester-tei-2021.html
https://www2.circleci.com/forrester-tei-2021.html

To improve your delivery outcomes,
start with CI.

Adopting Continuous Integration’s thorough, automated testing

practices alongside Agile product development is key in differentiating

your organization from competitors. Automation has crept into

almost every development team to some degree and many teams

are beginning to excel at CI. If your team is not a leader in developer

velocity, then they are, at best, only on par with their competitors.

Losing an edge in a competitive marketplace is a huge disadvantage.

Our data shows that many, many teams are able to meet or exceed

our industry-best benchmarks for engineering velocity. Average users

of CircleCI rank among some of the highest-performing teams in the

industry.

But what can you do to beat the average? How do you maintain your

advantage when your competitors have access to the same tools that

you do?

Based on our analysis, we know that average use of CircleCI enables

elite stats for performance. We also measured workflows that far

exceeded these median values and we have some ideas about how

they get there.

28

 • The first step to improving your team’s metrics is to record
where they fall today. You have to know how well your team
is doing to set realistic targets. Making incremental progress
across the metrics will have a measurable impact, but only if
you can establish your team’s baseline first. If you’re a current
CircleCI user, you have access to the Insights dashboard, and
measurements of each of the metrics in this report, for all of your
workflows.

 • CircleCI offers a wide range of execution environments. The most
commonly used are Medium Docker and Medium Linux. Selecting
even larger machines to run your workflow can reduce the time it
takes for that workflow to run.

 • Speed: CircleCI offers a fleet of Docker images for our users.
These images have been optimized for CI for your convenience so
that they are more deterministic and faster to load.

 • Intelligent test-splitting, matrix jobs, parallelization, and
concurrency options allow for robust test suites to run in
significantly shorter times. Due to this, increasing your testing
does not cause a proportional increase in workflow Duration.

 • Dynamic configuration allows for users to use jobs and workflows,
not only to execute work but to determine the work they want to
run for more dynamism within their pipelines.

 • Scheduled pipelines let users run pipelines at regular intervals
— hourly, daily, or weekly for enhanced pipeline control and
efficiency.

 • Advanced caching options available on the platform significantly
reduce the Duration of a workflow when optimized. Many
packages used to build your application can be cached and
reused, saving you the time involved with downloading these
packages on every run. Docker layer caching, for those building
custom Docker images, can allow for an even greater reduction in
workflow Duration.

 • The fastest way to debug a failed build is to gain access to the
machine where the workflow failed. CircleCI offers the ability
to rerun a failed workflow and to use SSH to gain access to the
machine that fails. Getting a signal fast is only one side of the
CI feedback loop. The other side is the ability to quickly recover.
Nothing lets your developers get closer to the problem than
access to the machine that failed.

 • CircleCI offers orbs, which are reusable packages of configuration.
Abstracting layers of code from CI configuration files into open-
source, community-created, and validated components, or private
components for use exclusively within your organization, allows
you to add or replace services without the risk of failure. Using
well-tested configuration components reduces the sources
of error, and using orbs to integrate testing suites into your CI
pipeline means getting more information from your runs. We
observed that Throughput for workflows increases with orb usage
(from 0 to 1 orb and from 1 orb to many).

 • Premium support includes the option for configuration review
by DevOps experts at CircleCI. These reviews find optimization
opportunities that can greatly reduce workflow Duration and other
configuration bottlenecks.

29

A fun aside on
language

Few teams will look at the popularity of a new language

and decide to rebuild their entire codebase, but it

is always interesting to observe the trends. These

trends highlight changes in the broader industry for

development teams at the leading edge of application

development. After all, entirely new services will have

to be built in the future and the languages popular for

building today’s services may not be the most ideal for

building the services of the future.

Here are the most common languages used on our

platform in 2019, 2020, and 2021:

JavaScript

Ruby

TypeScript

Python

PHP

Go

Java

HTML

Kotlin

Swift

Shell

HCL

Vue

Scala

Elixir

Jupyter Notebook

CSS

C++

Clojure

C#

Objective-C

TSQL

C

Groovy

Rust

Gherkin

Apex

Dockerfile

Rust

2019 2020 2021

1. Gherkin

2. HCL

3. JavaScript

4. Go

5. Clojure

6. C#

7. Vue

8. TypeScript

9. Ruby

10. Python

11. PHP

12. Perl

13. Shell

14. Kotlin

15. Elixir

16. HTML

17. Scala

18. Jupyter Notebook

MTTR

19. Java

20. Swift

21. Apex

22. CSS

23. C++

24. Rust

25. C

Go, also with a favorable showing in Duration, appears near the

top in MTTR, too.

1. Batchfile

2. SaltStack

3. Makefile

4. Smarty

5. Jsonnet

6. Shell

7. Mustache

8. HCL

9. FreeMarker

10. Dockerfile

11. PLSQL

12. Jinja

13. Elm

14. Lua

15. Liquid

16. VCL

17. Open Policy Agent

18. Groovy

Duration

19. Go

20. Starlark

21. API Blueprint

22. Roff

23. HTML

24. R

25. Python

The interesting thing here is not the fact that languages with few

build steps are finishing first — many shell scripts run and exit

without robust testing. What is interesting is seeing Go show up

favorably among mostly scripting languages.

31

1. Dockerfile

2. Vue

3. Shell

4. Go

5. SCSS

6. HTML

7. TypeScript

8. PHP

9. Python

10. C#

11. HCL

12. JavaScript

13. Elixir

14. Clojure

15. Jupyter Notebook

16. Java

17. Scala

18. CSS

Success Rate

19. PLpgSQL

20. Kotlin

21. Ruby

22. Makefile

23. Groovy

24. TSQL

25. Gherkin

The high Success Rate of some of the languages at the top

reflects low testing. These languages are not known for robust

testing — they likely represent steps producing artifacts and

output. Go, again, is an outlier here as dynamic languages include

build and test steps for each of those languages.

1. Hack

2. Slim

3. Elm

4. Mustache

5. Haskell

6. Jinja

7. Gherkin

8. Jsonnet

9. Jupyter Notebook

10. Apex

11. TypeScript

12. Swift

13. Ruby

14. Dart

15. Elixir

16. Go

17. C#

18. Kotlin

Throughput

19. Blade

20. Scala

21. Python

22. LookML

23. Lua

24. CoffeeScript

25. Clojure

Hack sells itself as the language for fast development and high

Throughput, and projects using Hack on our platform show

up at the top. Interestingly, Apex shows a growing number of

Salesforce projects adopting CI.

32

Methodology In order to create this report, we pulled data for every day

between December 1, 2019, and September 30, 2021. We

filtered this to only include projects that use GitHub as their

VCS. In an attempt to restrict our analysis to real companies

and repeatable workflows, we restricted the dataset to projects

that have at least 2 contributors and workflows that ran at

least 5 times on CircleCI. (To be clear: if the workflow of that

name for that project ran 5 times in the full history observed,

we included it. The number of contributors is also over all-time

on CircleCI, not just the analysis time.) In all, this constitutes

data on 250 million+ workflows, from more than 43,000

organizations, and over 290,000 projects.

When analysis restricts to the default branch of the project, it is

using the current value for the default branch, possibly missing

some older data for projects that changed their default branch

during the analysis window. Industry data is sourced from

Clearbit and is not available for all organizations.

 • Every day between Dec 1, 2019 and Sept 30, 2021

 • Only GitHub projects

 • Only projects with more than one contributor

 • Only workflows that ran at least 5 times

 • 257,389,673 workflows

 • 43,468 orgs

 • 290,400 projects

33

REPORT AUTHOR

 • Ron Powell

REPORT CONTRIBUTORS

 • Michael Stahnke

 • Jeremy Goldsmith

 • Brandon Byars

 • Coty Rosenblath
REPORT EDITOR

 • Molly Fosco

REPORT DESIGNER

 • Alex Moran

ACKNOWLEDGEMENTS

 • Melissa Santos

