
OPERATIONS GUIDE
A guide for administrators of CircleCI Server
installations on AWS and private infrastructure.

docs@circleci.com

Version 2.19.14, 03/07/2022: FINAL

Overview . 1

Execution Environments. 2

Architecture . 2

Introduction to Nomad Cluster Operation . 5

Basic Terminology and Architecture. 5

Basic Operations . 6

Monitoring Your Installation . 9

Metrics Overview . 9

Standard Metrics Configuration . 10

System Monitoring Metrics . 10

Supported Platforms . 13

Custom Metrics . 15

Additional Tips . 20

Configuring Nomad Client Metrics . 22

Nomad Metrics Server . 22

Nomad Metrics Client. 22

StatsD Metrics . 26

Setting Up HTTP Proxies . 29

Overview. 29

Service Machine Proxy Configuration . 29

Data Persistence . 33

Authentication . 34

OAuth with GitHub/GitHub Enterprise. 34

LDAP . 34

VM Service . 39

Overview. 39

1. Supply AMIs . 41

2. Define Instance Types . 43

3. On Demand and Preallocated Instances . 43

Job and Instance Management . 43

Accessing Remote Docker and machine instances . 43

Running GPU Executors . 45

Prerequisites. 45

Overview. 45

Adding GPU Steps to an AMI . 45

Setting Up Certificates . 46

Using a Custom Root CA . 46

Setting up ELB Certificates . 46

Setting up TLS/HTTPS on CircleCI Server . 48

Managing User Accounts in Server Installations . 50

Suspending Accounts . 50

Reactivating a Suspended User Account. 51

Controlling Account Access. 52

Build Artifacts . 55

Safe and Unsafe Content Types . 55

Allow Unsafe Content types . 56

Enabling Usage Statistics. 57

Detailed Usage Statistics . 57

Accessing Usage Data. 59

Configuring the JVM Heap Size . 60

Setting up . 60

Verify customization is applied . 60

SSH Rerun Architecture in Server . 62

Rerunning a Job with SSH . 62

Maintenance . 63

System Checks . 63

Security and Access Control . 66

System Configuration . 66

Metrics . 66

Usage Statistics . 67

Health Checks . 67

Operational Tasks . 68

Troubleshooting. 68

Queues . 71

Daylight-saving time changes . 72

Data cleardown . 72

Log rotation . 72

Replicated Failover and Recovery procedures . 72

User Management . 72

Backup and Recovery . 73

Disaster Recovery . 73

Backing up CircleCI Data . 73

Backing up the Database . 73

Backing up Object Storage. 73

Snapshotting on AWS EBS. 73

Restoring From Backup . 74

Cleaning up Build Records . 74

Security . 75

Overview. 75

Encryption. 75

Sandboxing . 75

Integrations. 75

Audit Logs . 76

Checklist To Using CircleCI Securely as a Customer . 77

Troubleshooting Server Installations . 79

Generating a Support Bundle . 79

Debug Queuing Builds . 79

Why do my Jobs stay in queued status until they fail and never successfully run?. 82

Why is the cache failing to unpack? . 82

How do I get around the API service being impacted by a high thread count? . 82

Frequently Asked Questions . 83

Customization and Configuration . 90

Notable Files & Folders . 90

Service Configuration Overrides. 91

CircleCI server container architecture . 95

Containers, Roles, Failure Modes and Startup Dependencies . 96

CircleCI Server AWS S3 Storage Lifecycle Guide . 101

Example Lifecycle Policy Configuration for S3 Buckets . 101

Overview


CircleCI server v2.x uses the CircleCI 2.0 architecture.

version: 2.0 should be used in all .circleci/config.yml files.

Currently not supported for Server: orbs, reusable commands, pipelines.

CircleCI Server is a modern continuous integration and continuous delivery (CI/CD) platform installable

inside your private cloud or data center. Refer to the Changelog for what’s new in this CircleCI server

release.

Figure 1. CircleCI Services Architecture

Overview | OPERATIONS GUIDE | 1

https://circleci.com/docs/2.0/orb-intro/#section=configuration
https://circleci.com/docs/2.0/reusing-config/#authoring-reusable-commands
https://circleci.com/docs/2.0/build-processing/
https://circleci.com/server/changelog

Execution Environments

CircleCI uses Nomad as the primary job scheduler. Refer to our Introduction to Nomad Cluster Operation to

learn more about the job scheduler and how to perform basic client and cluster operations.

By default, CircleCI Nomad clients automatically provision containers according to the image configured for

each job in your .circleci/config.yml file.

Architecture

Figure 1.1 illustrates CircleCI core components, build orchestration services, and executors. The CircleCI API

is a full-featured RESTful API that allows you to access all information and trigger all actions in CircleCI.

Within the CircleCI UI is the Insights page, which acts as a dashboard showing the health of all repositories

you are following including:

• median build time

• median queue time

• last build time

• success rate

• parallelism

CircleCI consists of two primary components: Services and Nomad Clients. Any number of Nomad Clients

execute your jobs and communicate back to the Services. All components must access GitHub or your

hosted instance of GitHub Enterprise on the network, as illustrated below.

Services Machine

The Services machine must not be restarted and may be backed up using VM snapshotting. If you must

restart the Services machine, do so only as a last resort, because a restart will result in downtime. Refer to

the Backup and Recovery chapter for instructions.

Execution Environments | OPERATIONS GUIDE | 2

https://circleci.com/docs/api/v1/#section=reference

DNS resolution may point to the IP address of the Services machine. It is also possible to point to a load

balancer, for example an ELB in AWS. The following table describes the ports used for traffic on the Service

machine:

Source Ports Use

End Users 80, 443, 4434 HTTP/HTTPS Traffic

Administrators 22 SSH

Administrators 8800 Admin Console

Builder Boxes all traffic, all ports Internal Communication

GitHub (Enterprise or .com) 80, 443 Incoming Webhooks

Nomad Clients

Nomad Clients run without storing state, enabling you to increase or decrease the number of containers as

needed.

To ensure enough Nomad clients are running to handle all builds, track the queued builds and increase the

number of Nomad Client machines as needed to balance the load. For more on tracking metrics see

Monitoring Your Installation.

Each machine reserves two vCPUs and 4GB of memory for coordinating builds. The remaining processors

and memory create the containers. Larger machines are able to run more containers and are limited by the

number of available cores after two are reserved for coordination.


The maximum machine size for a Nomad client is 128GB RAM/ 64 CPUs, contact your

CircleCI account representative to request use of larger machines for Nomad Clients.

The following table describes the ports used on Nomad clients:

Source Ports Use

End Users 64535-65535 SSH into builds

Administrators 80 or 443 CCI API Access

Administrators 22 SSH

Services Machine all traffic, all ports Internal Comms

Nomad Clients (including itself) all traffic, all ports Internal Comms

GitHub

CircleCI uses GitHub or GitHub Enterprise credentials for authentication which, in turn, may use LDAP,

SAML, or SSH for access. This means CircleCI will inherit the authentication supported by your central SSO

infrastructure.

Architecture | OPERATIONS GUIDE | 3


CircleCI does not support changing the URL or backend GitHub instance after it has been

set up. The following table describes the ports used on machines running GitHub to

communicate with the Services and Nomad Client instances.

Source Ports Use

Services 22 Git Access

Services 80, 443 API Access

Nomad Client 22 Git Access

Nomad Client 80, 443 API Access

Architecture | OPERATIONS GUIDE | 4

Introduction to Nomad Cluster Operation

CircleCI uses Nomad as the primary job scheduler. This chapter provides a basic introduction to Nomad for

understanding how to operate the Nomad Cluster in your CircleCI installation.

Basic Terminology and Architecture

Figure 2. Nomad Cluster Management

Basic Terminology and Architecture | OPERATIONS GUIDE | 5

https://www.hashicorp.com/blog/nomad-announcement/

• Nomad Server: Nomad servers are the brains of the cluster; they receive and allocate jobs to Nomad

clients. In CircleCI, a Nomad server runs on your Services machine as a Docker Container.

• Nomad Client: Nomad clients execute the jobs they are allocated by Nomad servers. Usually a Nomad

client runs on a dedicated machine (often a VM) in order to fully take the advantage of machine power.

You can have multiple Nomad clients to form a cluster and the Nomad server allocates jobs to the

cluster with its scheduling algorithm.

• Nomad Jobs: A Nomad job is a specification, provided by a user, that declares a workload for Nomad. A

Nomad job corresponds to an execution of a CircleCI job. If the job uses parallelism, say 10 parallelism,

then Nomad will run 10 jobs.

• Build Agent: Build Agent is a Go program written by CircleCI that executes steps in a job and reports the

results. Build Agent is executed as the main process inside a Nomad Job.

Basic Operations

The following section is a basic guide to operating a Nomad cluster in your installation.

The nomad CLI is installed in the Service instance. It is pre-configured to talk to the Nomad cluster, so it is

possible to use the nomad command to run the following commands in this section.

Checking the Jobs Status

The get a list of statuses for all jobs in your cluster, run:

nomad status

The Status is the most important field in the output, with the following status type definitions:

• running: Nomad has started executing the job. This typically means your job in CircleCI is started.

• pending: There are not enough resources available to execute the job inside the cluster.

• dead: Nomad has finished executing the job. The status becomes dead regardless of whether the

corresponding CircleCI job/build succeeds or fails.

Checking the Cluster Status

To get a list of your Nomad clients, run:

nomad node-status


nomad node-status reports both Nomad clients that are currently serving (status active)

and Nomad clients that were taken out of the cluster (status down). Therefore, you need to

count the number of active Nomad clients to know the current capacity of your cluster.

To get more information about a specific client, run the following from that client:

Basic Operations | OPERATIONS GUIDE | 6

nomad node-status -self

This will give information such as how many jobs are running on the client and the resource utilization of the

client.

Checking Logs

As noted in the Nomad Jobs section above, a Nomad Job corresponds to an execution of a CircleCI job.

Therefore, Nomad Job logs can sometimes help to understand the status of a CircleCI job if there is a

problem. To get logs for a specific job, run:

nomad logs -job -stderr <nomad-job-id>

 Be sure to specify the -stderr flag as this is where most Build Agent logs appear.

While the nomad logs -job command is useful, the command is not always accurate because the -job flag

uses a random allocation of the specified job. The term allocation is a smaller unit in Nomad Job, which is

out of scope for this document. To learn more, please see the official document.

Complete the following steps to get logs from the allocation of the specified job:

1. Get the job ID with nomad status command.

2. Get the allocation ID of the job with nomad status <job-id> command.

3. Get the logs from the allocation with nomad logs -stderr <allocation-id>

Scaling the Cluster

By default, your Nomad Client is set up within an Auto Scaling Group (ASG) within AWS. To view settings:

1. Go to your EC2 Dashboard and select Auto Scaling Groups from the left hand menu

2. Select your Nomad Client

3. Select Actions > Edit to set Desired/Minimum/Maximum counts. This defines the number of Nomad

Clients to spin up and keep available. Use the Scaling Policy tab to scale up your group automatically at

your busiest times, see below for best practices for defining scaling policies. Use nomad job metrics to

assist in defining your scaling policies.

Auto Scaling Policy Best Practices

There is a blog post series wherein CircleCI engineering spent time running simulations of cost savings for

the purpose of developing a general set of best practices for Auto Scaling. Consider the following best

practices when setting up AWS Auto Scaling:

1. In general, size your cluster large enough to avoid queueing builds. That is, less than one second of

queuing for most workloads and less than 10 seconds for workloads run on expensive hardware or at

highest parallellism. Sizing to reduce queuing to zero is best practice because of the high cost of

developer time. It is difficult to create a model in which developer time is cheap enough for under-

Basic Operations | OPERATIONS GUIDE | 7

https://www.nomadproject.io/docs/internals/scheduling.html
https://circleci.com/blog/mathematical-justification-for-not-letting-builds-queue/

provisioning to be cost-effective.

2. Create an Auto Scaling Group with a Step Scaling policy that scales up during the normal working hours

of the majority of developers and scales back down at night. Scaling up during the weekday normal

working hours and back down at night is the best practice to keep queue times down during peak

development, without over provisioning at night when traffic is low. Looking at millions of builds over

time, a bell curve during normal working hour emerges for most data sets.

This is in contrast to auto scaling throughout the day based on traffic fluctuations, because modelling

revealed that boot times are actually too long to prevent queuing in real time. Use Amazon’s Step Policy

instructions to set this up along with Cloudwatch Alarms.

Shutting Down a Nomad Client

When you want to shutdown a Nomad client, you must first set the client to drain mode. In drain mode, the

client will finish any jobs that have already been allocated but will not be allocated any new jobs.

1. To drain a client, log in to the client and set the client to drain mode with node-drain command as

follows:

nomad node-drain -self -enable

2. Then, make sure the client is in drain mode using the node-status command:

nomad node-status -self

Alternatively, you can drain a remote node with the following command, substituting the node ID:

nomad node-drain -enable -yes <node-id>

Scaling Down the Client Cluster

To set up a mechanism for clients to shutdown, first enter drain mode, then wait for all jobs to be finished

before terminating the client. You can also configure an ASG Lifecycle Hook that triggers a script for scaling

down instances.

The script should use the commands in the section above to do the following:

1. Put the instance in drain mode

2. Monitor running jobs on the instance and wait for them to finish

3. Terminate the instance

Basic Operations | OPERATIONS GUIDE | 8

http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scaling-simple-step.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html

Monitoring Your Installation

This section includes information on metrics for monitoring your CircleCI server v2.x installation.

Metrics Overview

Metrics are technical statistical data collected for monitoring and analytics purposes. The data includes basic

information, such as CPU or memory usage, as well as more advanced counters, such as number of executed

builds and internal errors. Using metrics you can:

• Quickly detect incidents and abnormal behavior

• Dynamically scale compute resources

• Retroactively understand infrastructure-wide issues

How Metrics Work in CircleCI Server

Telegraf is the main component used for metrics collection in CircleCI server v2.x. Telegraf is server

software that brokers metrics data emitted by CircleCI services to data monitoring platforms such as

Datadog or AWS CloudWatch.

Figure 3. Metrics

Metrics collection in CircleCI server v2.x works as follows:

• Each component of a server installation sends metrics data to the telegraf container running on the

Services machine.

• Telegraf listens on port 8125/UDP and receives data from all components (inputs) and applies

configured filters to determine whether data should be kept or dropped.

• For some metric-types, Telegraf keeps metrics data inside and calculates statistical data (such as max,

min, mean, stdev, sum) periodically.

• Finally, Telegraf sends out data to configured sinks (outputs), such as stdout (on the Services machine),

Datadog and/or AWS CloudWatch.

It is worth noting that Telegraf can accept multiple input and output types at the same time allowing

Metrics Overview | OPERATIONS GUIDE | 9

administrators to configure a single Telegraf instance to collect and forward multiple metrics data sets to

both Datadog and CloudWatch.

Standard Metrics Configuration

Review your metrics configuration file using the following command:

sudo docker inspect --format='{{range .Mounts}}{{println .Source "->" .Destination}}{{end}}'

telegraf | grep telegraf.conf | awk '{ print $1 }' | xargs cat

There are four notable blocks in the file (some blocks might not be there depending on your configuration in

the Management Console):

• [[inputs.statsd]] – Input configuration to receive metrics data through 8125/UDP (as discussed

above)

• [[outputs.file]] – Output configuration to emit metrics to stdout. All accepted metrics are configured

to be shown in Telegraf docker logs. This is helpful for debugging your metrics configuration.

• [[outputs.cloudwatch]] – Output configuration to emit metrics to CloudWatch

• [[outputs.datadog]] – Output configuration to emit metrics to Datadog

This configuration file is automatically generated by Replicated (the service used to manage and deploy

CircleCI server v2.x) and is fully managed by Replicated. If you wish to customize the standard configuration

you will need to configure Replicated to not insert the blocks you want to change.



Do not attempt to directly modify the file. Any changes made in this way will be

destroyed by Replicated upon certain events, such as service restarts. For example, if a

customized [[inputs.statsd]] block is added without stopping automatic interpolation,

you will encounter errors as Telegraf attempts to listen to 8125/UDP twice, and the second

attempt will fail with EADDRINUSE.

In a standard configuration with no metrics customization the main config discussed above is all that is

required. If you have configured metrics customization by placing files under /etc/circleconfig/telegraf,

those configurations are appended to the main config – imagine `cat`ing the main config and all of those

customization files. For more on customizing metrics see the Custom Metrics section.

System Monitoring Metrics

To enable metrics forwarding to either AWS Cloudwatch or Datadog, follow the steps for the service you

wish to use in the Supported Platforms section. The following sections give an overview of available metrics

for your installation.

VM Service and Docker Metrics

VM Service and Docker services metrics are forwarded via Telegraf, a plugin-driven server agent for

collecting and reporting metrics.

The following metrics are enabled:

Standard Metrics Configuration | OPERATIONS GUIDE | 10

https://github.com/influxdata/telegraf

• CPU

• Disk

• Memory

• Networking

• Docker

Nomad Job Metrics

Nomad job metrics are enabled and emitted by the Nomad Server agent. Five types of metrics are reported:

Metric Description

circle.nomad.server_agent.poll_failure Returns 1 if the last poll of the Nomad agent

failed, otherwise it returns 0.

circle.nomad.server_agent.jobs.pending Returns the total number of pending jobs across

the cluster.

circle.nomad.server_agent.jobs.running Returns the total number of running jobs across

the cluster.

circle.nomad.server_agent.jobs.complete Returns the total number of complete jobs

across the cluster.

circle.nomad.server_agent.jobs.dead Returns the total number of dead jobs across

the cluster.

When the Nomad metrics container is running normally, no output will be written to standard output or

standard error. Failures will elicit a message to standard error.

CircleCI Metrics

Introduced in CircleCI server v2.18

circle.backend.action.upload-artifact-error Tracks how many times an artifact has failed to upload.

circle.build-queue.runnable.builds Tracks how many builds flowing through the system are

considered runnable.

circle.dispatcher.find-containers-failed Tracks how many 1.0 builds

circle.github.api_call Tracks how many api calls CircleCI is making to github

circle.http.request Tracks the response codes to CircleCi requests

circle.nomad.client_agent.*` Tracks nomad client metrics

circle.nomad.server_agent.* Tracks how many nomad servers there are.

circle.run-queue.latency Tracks how long it takes for a runnable build to be

accepted.

System Monitoring Metrics | OPERATIONS GUIDE | 11

https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md#cpu-time-measurements
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/disk/README.md#metrics
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/mem/README.md#metrics
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/net/NET_README.md
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/docker#metrics
https://www.nomadproject.io/docs/telemetry/metrics.html#job-metrics

circle.state.container-builder-ratio Keeps track of how many containers exist per builder (

1.0 only).

circle.state.lxc-available Tracks how many containers are available (1.0 only)

circle.state.lxc-reserved Tracks how many containers are reserved/in use (1.0

only).

circleci.cron-service.messaging.handle-
message

Provides timing and counts for RabbitMQ messages

processed by the cron-service

circleci.grpc-response Tracks latency over the system grpc system calls.

System Monitoring Metrics | OPERATIONS GUIDE | 12

Supported Platforms

We have two built-in platforms for metrics and monitoring: AWS CloudWatch and DataDog. The sections

below detail enabling and configuring each in turn.

AWS CloudWatch

To enable AWS CloudWatch complete the following:

1. Navigate to the settings page within your Management Console. You can use the following URL,

substituting your CircleCI URL: your-circleci-hostname.com:8800/settings#cloudwatch_metrics.

2. Check Enabled under AWS CloudWatch Metrics to begin configuration.

Figure 4. Enable Cloudwatch

AWS CloudWatch Configuration

There are two options for configuration:

• Use the IAM Instance Profile of the services box and configure your custom region and namespace.

Figure 5. CloudWatch Region and Namespace

Supported Platforms | OPERATIONS GUIDE | 13

• Alternatively, you may use your AWS Access Key and Secret Key along with your custom region and

namespace.

Figure 6. Access Key and Secret Key

After saving you can verify that metrics are forwarding by going to your AWS CloudWatch console.

DataDog

To enable Datadog complete the following:

1. Navigate your Management Console Settings. You can use the following URL, substituting your CircleCI

hostname: your-circleci-hostname.com:8800/settings#datadog_metrics

2. Check Enabled under Datadog Metrics to begin configuration.

Supported Platforms | OPERATIONS GUIDE | 14

Figure 7. Enable Datadog Metrics

3. Enter your DataDog API Key. You can verify that metrics are forwarding by going to your DataDog

metrics summary.

Figure 8. Enter Datadog API key

Custom Metrics

Custom Metrics using a Telegraf configuration file allows for more fine grained control than allowing

Replicated to forward standard metrics to Datadog or AWS Cloudwatch.

The basic Server metrics configuration assumes fundamental use cases only. It might be beneficial to

customize the way metrics are handled for your installation in the following ways:

• Forward metrics data to your preferred platform (e.g. your own InfluxDB instance)

• Monitor additional metrics in order to detect specific events

• Reduce the number of metrics sent to data analysis platforms (to reduce gross operation costs)

1. Disable Standard Metrics Setup

Disable Replicated’s interpolation of the Telegraf configuration to fully customize and outputs:

1. Open the Management Console.

2. On the Settings page, go to Custom Metrics section and enable the "Use custom telegraf metrics"

option.

Custom Metrics | OPERATIONS GUIDE | 15

Figure 9. Custom Metrics

3. Scroll down to save the change and restart services.


There will be a downtime along with a service restart. After disabling it you will have to

manually configure outputs to Datadog and/or CloudWatch, regardless of configurations

on Replicated.

2. Create your Customized Config

Now you are ready to do anything Telegraf supports! All you need to provide is a valid Telegraf config file.

1. SSH into the Services machine

2. Add the following to /etc/circleconfig/telegraf/statsd.conf

[[inputs.statsd]]
 service_address = ":8125"
 parse_data_dog_tags = true
 metric_separator = "."
 namepass = []

3. Under namepass add any metrics you wish to receive, the example below shows choosing to configure

just the first 4 from the list above. (See below for some additional example configs):

Custom Metrics | OPERATIONS GUIDE | 16

[[inputs.statsd]]
 service_address = ":8125"
 parse_data_dog_tags = true
 metric_separator = "."
 namepass = [
 "circle.backend.action.upload-artifact-error",
 "circle.build-queue.runnable.builds",
 "circle.dispatcher.find-containers-failed",
 "circle.github.api_call"
]

4. Restart the telegraf container by running: sudo docker restart telegraf

 See the Telegraf README for further config syntax details.

Sample Telegraph Configuration

Scenario 1: Record standard metrics to two InfluxDB instances

The example below records default metrics to two InfluxDB instances: One is your on-premises InfluxDB

server (your-influx-db-instance.example.com), and the other is InfluxDB Cloud 2.

Custom Metrics | OPERATIONS GUIDE | 17

https://github.com/influxdata/telegraf/blob/master/README.md
https://cloud2.influxdata.com/

[[inputs.statsd]]
 service_address = ":8125"
 parse_data_dog_tags = true
 metric_separator = "."
 namepass = [
 "circle.backend.action.upload-artifact-error",
 "circle.build-queue.runnable.builds",
 "circle.dispatcher.find-containers-failed",
 "circle.github.api_call",
 "circle.http.request",
 "circle.nomad.client_agent.*",
 "circle.nomad.server_agent.*",
 "circle.run-queue.latency",
 "circle.state.container-builder-ratio",
 "circle.state.lxc-available",
 "circle.state.lxc-reserved",
 "circle.vm-service.vm.assigned-vm",
 "circle.vm-service.vms.delete.status",
 "circle.vm-service.vms.get.status",
 "circle.vm-service.vms.post.status",
 "circleci.cron-service.messaging.handle-message",
 "circleci.grpc-response"
]

[[outputs.influxdb]]
 url = "http://your-influx-db-instance.example.com:8086"
 database = "circleci"

[[outputs.influxdb_v2]]
 urls = ["https://us-central1-1.gcp.cloud2.influxdata.com"]
 token = "YOUR_TOKEN_HERE"
 organization = "circle@example.com"
 bucket = "circleci"

Scenario 2: Record all metrics to Datadog

The standard configuration handles only selected metrics, and there are many metrics discarded by Telegraf.

If you want to receive this discarded, sophisticated data, such as JVM stats and per-container CPU usage,

you can keep all received metrics by removing namepass filter. This example also illustrates how to

configure metrics emission to Datadog. As discussed above, you need manual configuration for outputs to

Datadog regardless of configurations on Replicated.

Custom Metrics | OPERATIONS GUIDE | 18

 This scenario leads to very large amounts of data.

[[inputs.statsd]]
 service_address = ":8125"
 parse_data_dog_tags = true
 metric_separator = "."

[[outputs.datadog]]
 apikey = 'YOUR_API_KEY_HERE'

Scenario 3: Send limited metrics to CloudWatch

AWS charges fees for CloudWatch per series of scalar (i.e. at the level of "mean" or "sum"). Since multiple

fields (e.g. mean, max, min and sum) are calculated for each metrics key (e.g. circle.run-queue.latency) and

some fields can be redundant, you might want to select which fields are sent to CloudWatch. This can be

achieved by configuring [[outputs.cloudwatch]] with fieldpass. You also may declare

[[outputs.cloudwatch]] multiple times to pick up multiple metrics, as illustrated below.

Custom Metrics | OPERATIONS GUIDE | 19

[[inputs.statsd]]

 # Accept all metrics at input level to 1) enable output configurations without thinking of inputs,

and to 2) dump discarded metrics to stdout just in case.

 service_address = ":8125"

 parse_data_dog_tags = true

 metric_separator = "."

[[outputs.cloudwatch]]

 # Fill in these two variables if you need to access CloudWatch with an IAM User, not an IAM Role

attached to your Services box

 # access_key = 'ACCESS'

 # secret_key = 'SECRET'

 # Specify region for CloudWatch

 region = 'ap-northeast-1'

 # Specify namespace for easier monitoring

 namespace = 'my-circleci-server'

 # Name of metrics key to record

 namepass = ['circle.run-queue.latency']

 # Name of metrics field to record; key and field are delimited by an underscore (_)

 fieldpass = ['mean']

[[outputs.cloudwatch]]

 # Outputs can be specified multiple times.

 # Fill in these two variables if you need to access CloudWatch with an IAM User, not an IAM Role

attached to your Services box

 # access_key = 'ACCESS'

 # secret_key = 'SECRET'

 # Specify region for CloudWatch

 region = 'ap-northeast-1'

 # Specify namespace for easier monitoring

 namespace = 'my-circleci-server'

 # Name of metrics key to record

 namepass = ['mem']

 # Name of metrics field to record; key and field are delimited by an underscore (_)

 fieldpass = ['available_percent']

Additional Tips

You may check the logs by running docker logs -f telegraf to confirm your output provider (e.g. influx) is

listed in the configured outputs. Additionally, if you would like to ensure that all metrics in an installation are

tagged against an environment you could place the following code in your config:

[global_tags]
Env="<staging-circleci>"

Additional Tips | OPERATIONS GUIDE | 20

Please see the InfluxDB documentation for default and advanced installation steps.


Any changes to the config will require a restart of the CircleCI application which will

require downtime.

Additional Tips | OPERATIONS GUIDE | 21

https://github.com/influxdata/influxdb#installation

Configuring Nomad Client Metrics

Nomad Metrics is a helper service used to collect metrics data from the Nomad server and clients running

on the Services and Nomad instances respectively. Metrics are collected and sent using the DogStatsD

protocol and sent to the Services machine.

Nomad Metrics Server

The Nomad Metrics container is run on the services host using the server flag and is installed as part of the

CircleCI server installation process, requiring no additional configuration.

Nomad Metrics Client

The Nomad Metrics client is installed and run on all Nomad client instances. You will need to update your

AWS Launch Configuration in order to install and configure it. Additionally, you will need to modify the

AWS security group to ensure that UDP port 8125 is open on the Services machine. Steps for both

configuration changes are explained below.


Before proceeding, you should be logged into the EC2 Service section of the AWS

Console. Make sure that you logged into the region you use to run CircleCI server.

Updating the Services machine Security Group

1. Select the Instances link located under the Instances group in the left sidebar.

2. Select the Services Box Instance. The name tag typically resembles circleci_services.

3. In the description box at the bottom, select the users security group link located next to the Security

Groups section. It typically resembles *_users_sg.

4. This will take you straight to the Security Group page highlighting the users security group. In the

description box at the bottom, select the Inbound tab followed by the Edit button.

5. Select the Add a Rule button. From the drop-down, select Custom UDP Rule. In the Port Range field enter

8125.

6. The source field gives you a few options. However, this ultimately depends on how you have configured

the VPC and subnet. Below are some more common scenarios.

a. (Suggested) Allow traffic from the nomad client subnet. You can usually match the entries used for

ports 4647 or 3001. For example, 10.0.0.0/24.

b. Allow all traffic to UDP port 8125 using 0.0.0.0/0.

7. Press the Save Button

Updating the AWS Launch Configuration

Prerequisites

AWS EC2 Launch Configuration ID

1. Select the Auto Scaling Groups (ASG) link in the the sidebar on the left.

Nomad Metrics Server | OPERATIONS GUIDE | 22

https://docs.datadoghq.com/developers/dogstatsd/

2. Locate the ASG with a name tag similar to`*_nomad_clients_asg`

3. The Launch Configuration name is next to the ASG name IE terraform-20180814231555427200000001

AWS EC2 Services Box Private IP Address

1. Select the Instances link located under the Instances group in the left sidebar

2. Select the Services Box Instance. The name tag typically resembles circleci_services

3. In the description box at the bottom of the page, make note of the private IP address.

Updating the Launch Configuration

1. Select the Launch Configurations link located under Auto Scaling in the sidebar to the left. Select the

Launch Configuration you retrieved in the previous steps.

2. In the description pane at the bottom, select the Copy launch configuration button.

3. Once the configuration page opens, select 3. Configure details link located at the top of the page.

4. Update the Name field to something meaningful IE nomad-builder-with-metrics-lc-DATE.

5. Select the Advanced Details drop down.

6. Copy and paste the launch configuration script from below in the text field next to User data.

7. IMPORTANT: Enter the private IP address of the services box at Line 10. For example, export

SERVICES_PRIVATE_IP="192.168.1.2".

8. Select the Skip to review button and then the Create launch configuration button.

#!/bin/bash

set -exu

export http_proxy=""

export https_proxy=""

export no_proxy=""

export aws_instance_metadata_url="http://169.254.169.254"

export PUBLIC_IP="$(curl $aws_instance_metadata_url/latest/meta-data/public-ipv4)"

export PRIVATE_IP="$(curl $aws_instance_metadata_url/latest/meta-data/local-ipv4)"

export DEBIAN_FRONTEND=noninteractive

UNAME="$(uname -r)"

export CONTAINER_NAME="nomad_metrics"

export CONTAINER_IMAGE="circleci/nomad-metrics:0.1.198-5f5befe"

export SERVICES_PRIVATE_IP=""

export NOMAD_METRICS_PORT="8125"

echo "---"

echo " Performing System Updates"

echo "---"

apt-get update && apt-get -y upgrade

echo "--------------------------------------"

echo " Installing NTP"

echo "--------------------------------------"

Nomad Metrics Client | OPERATIONS GUIDE | 23

apt-get install -y ntp

Use AWS NTP config for EC2 instances and default for non-AWS

if [-f /sys/hypervisor/uuid] && [`head -c 3 /sys/hypervisor/uuid` == ec2]; then

cat <<EOT > /etc/ntp.conf

driftfile /var/lib/ntp/ntp.drift

disable monitor

restrict default ignore

restrict 127.0.0.1 mask 255.0.0.0

restrict 169.254.169.123 nomodify notrap

server 169.254.169.123 prefer iburst

EOT

else

 echo "USING DEFAULT NTP CONFIGURATION"

fi

service ntp restart

echo "--------------------------------------"

echo " Installing Docker"

echo "--------------------------------------"

apt-get install -y apt-transport-https ca-certificates curl software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -

add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs)

stable"

apt-get install -y "linux-image-$UNAME"

apt-get update

apt-get -y install docker-ce=5:18.09.9~3-0~ubuntu-xenial

force docker to use userns-remap to mitigate CVE 2019-5736

apt-get -y install jq

mkdir -p /etc/docker

[-f /etc/docker/daemon.json] || echo '{}' > /etc/docker/daemon.json

tmp=$(mktemp)

cp /etc/docker/daemon.json /etc/docker/daemon.json.orig

jq '.["userns-remap"]="default"' /etc/docker/daemon.json > "$tmp" && mv "$tmp"

/etc/docker/daemon.json

sudo echo 'export http_proxy="${http_proxy}"' >> /etc/default/docker

sudo echo 'export https_proxy="${https_proxy}"' >> /etc/default/docker

sudo echo 'export no_proxy="${no_proxy}"' >> /etc/default/docker

sudo service docker restart

sleep 5

echo "--------------------------------------"

echo " Populating /etc/circleci/public-ipv4"

echo "--------------------------------------"

if ! (echo $PUBLIC_IP | grep -qP "^[\d.]+$")

then

 echo "Setting the IPv4 address below in /etc/circleci/public-ipv4."

 echo "This address will be used in builds with \"Rebuild with SSH\"."

 mkdir -p /etc/circleci

Nomad Metrics Client | OPERATIONS GUIDE | 24

 echo $PRIVATE_IP | tee /etc/circleci/public-ipv4

fi

echo "--------------------------------------"

echo " Installing nomad"

echo "--------------------------------------"

apt-get install -y zip

curl -o nomad.zip https://releases.hashicorp.com/nomad/0.9.3/nomad_0.9.3_linux_amd64.zip

unzip nomad.zip

mv nomad /usr/bin

echo "--------------------------------------"

echo " Creating config.hcl"

echo "--------------------------------------"

export INSTANCE_ID="$(curl $aws_instance_metadata_url/latest/meta-data/instance-id)"

mkdir -p /etc/nomad

cat <<EOT > /etc/nomad/config.hcl

log_level = "DEBUG"

name = "$INSTANCE_ID"

data_dir = "/opt/nomad"

datacenter = "default"

advertise {

 http = "$PRIVATE_IP"

 rpc = "$PRIVATE_IP"

 serf = "$PRIVATE_IP"

}

client {

 enabled = true

 # Expecting to have DNS record for nomad server(s)

 servers = ["$SERVICES_PRIVATE_IP:4647"]

 node_class = "linux-64bit"

 options = {"driver.raw_exec.enable" = "1"}

}

telemetry {

 publish_node_metrics = true

 statsd_address = "$SERVICES_PRIVATE_IP:8125"

}

EOT

echo "--------------------------------------"

echo " Creating nomad.conf"

echo "--------------------------------------"

cat <<EOT > /etc/systemd/system/nomad.service

[Unit]

Description="nomad"

[Service]

Restart=always

RestartSec=30

TimeoutStartSec=1m

ExecStart=/usr/bin/nomad agent -config /etc/nomad/config.hcl

[Install]

WantedBy=multi-user.target

EOT

Nomad Metrics Client | OPERATIONS GUIDE | 25

echo "--------------------------------------"

echo " Creating ci-privileged network"

echo "--------------------------------------"

docker network create --driver=bridge --opt com.docker.network.bridge.name=ci-privileged ci-

privileged

echo "--------------------------------------"

echo " Starting Nomad service"

echo "--------------------------------------"

service nomad restart

echo "--------------------------------------"

echo " Setting up Nomad metrics"

echo "--------------------------------------"

docker pull $CONTAINER_IMAGE

docker rm -f $CONTAINER_NAME || true

docker run -d --name $CONTAINER_NAME \

 --rm \

 --net=host \

 --userns=host \

 $CONTAINER_IMAGE \

 start --nomad-uri=http://localhost:4646 --statsd-host=$SERVICES_PRIVATE_IP --statsd-port

=$NOMAD_METRICS_PORT --client

Updating the Auto Scaling Group

1. Select the Auto Scaling Groups (ASG) link in the the sidebar on the left.

2. Select the ASG with a name tag similar to *_nomad_clients_asg.

3. In the description box at the bottom, select the Edit button.

4. Select the newly created Launch Configuration from the drop-down.

5. Press the Save button.

6. At this point, the older Nomad client instances will begin shutting down. They will be replaced with

newer Nomad clients running Nomad Metrics.

StatsD Metrics

 Metrics sent via StatsD will be updated every 10s.

--server


The number of jobs in a terminal state (complete and dead) will typically increase until

Nomad garbage-collects the jobs from its state.

StatsD Metrics | OPERATIONS GUIDE | 26

Name Type Description

circle.nomad.server_agent.poll_failure Gauge 1 if the last poll of the

Nomad agent failed; 0

otherwise. This gauge is set

independent of
circle.nomad.client_agent.p

oll_failure when nomad-

metrics is operating in

--client and --server modes

simultaneously.

circle.nomad.server_agent.jobs.pending Gauge Total number of pending jobs

across the cluster.

circle.nomad.server_agent.jobs.running Gauge Total number of running jobs

across the cluster.

circle.nomad.server_agent.jobs.complete Gauge Total number of complete

jobs across the cluster.

circle.nomad.server_agent.jobs.dead Gauge Total number of dead jobs

across the cluster.

--client

Name Type Description

circle.nomad.client_agent.poll_
failure

Gauge 1 if the last poll of the Nomad

agent failed; 0 otherwise.

circle.nomad.client_agent.resou
rces.total.cpu

Gauge (See below)

circle.nomad.client_agent.resou
rces.used.cpu

Gauge (See below)

circle.nomad.client_agent.resou
rces.available.cpu

Gauge (See below)

circle.nomad.client_agent.resou
rces.total.memory

Gauge (See below)

circle.nomad.client_agent.resou
rces.used.memory

Gauge (See below)

circle.nomad.client_agent.resou
rces.available.memory

Gauge (See below)

circle.nomad.client_agent.resou
rces.total.disk

Gauge (See below)

circle.nomad.client_agent.resou
rces.used.disk

Gauge (See below)

circle.nomad.client_agent.resou
rces.available.disk

Gauge (See below)

StatsD Metrics | OPERATIONS GUIDE | 27

Name Type Description

circle.nomad.client_agent.resou
rces.total.iops

Gauge (See below)

circle.nomad.client_agent.resou
rces.used.iops

Gauge (See below)

circle.nomad.client_agent.resou
rces.available.iops

Gauge (See below)



• CPU resources are reported in units of MHz. Memory resources are reported in units

of MB. Disk (capacity) resources are reported in units of MB.

• Resource metrics are scoped to the Nomad node that nomad-metrics has been

configured to poll. Figures from a single nomad-metrics job operating in --client

mode are not representative of the entire cluster (Though these timeseries may be

aggregated by an external mechanism to arrive at a cluster-wide view.)

• All metrics in the circle.nomad.client_agent.resources namespace will be

accompanied with the following tags when writing to DogStatsD:

◦ drain: true if the Nomad node has been marked as drained; false otherwise.

◦ status: One of initializing, ready, or down.

StatsD Metrics | OPERATIONS GUIDE | 28

Setting Up HTTP Proxies

This section describes how to configure CircleCI to use an HTTP proxy.

Overview

If you are setting up your proxy through Amazon, read this before proceeding:

Using an HTTP Proxy - AWS Command Line Interface

Avoid proxying internal requests, especially for the Services machine. To add these to the NO_PROXY rules,

run:

export NO_PROXY=<services_box_ip>

In an ideal case, traffic to S3 will not be proxied, and will instead be bypassed by adding

s3.amazonaws.com,*.s3.amazonaws.com to the NO_PROXY rule.

These instructions assume an unauthenticated HTTP proxy at 10.0.0.33:3128, a Services machine at

10.0.1.238 and use of ghe.example.com as the GitHub Enterprise host.


The following proxy instructions must be completed before installing CircleCI on fresh

VMs or instances. You must also configure JVM OPTs again as described below.

Service Machine Proxy Configuration

The Service machine has many components that need to make network calls, as follows:

• External Network Calls - Replicated is a vendor service that we use for the Management Console of

CircleCI. CircleCI requires Replicated to make an outside call to validate the license, check for updates,

and download upgrades. Replicated also downloads docker, installs it on the local machine, and uses a

Docker container to create and configure S3 buckets. GitHub Enterprise may or may not be behind the

proxy, but github.com will need to go through the proxy.

• Internal Network Calls

◦ If S3 traffic requires going through an HTTP proxy, CircleCI must pass proxy settings into the

container.

◦ The CircleCI instance on the Services machine runs in a Docker container, so it must to pass the

proxy settings to the container to maintain full functionality.

Set up Service Machine Proxy Support

For a static installation, not on AWS, SSH into the Services machine and run the following code snippet with

your proxy address:

Overview | OPERATIONS GUIDE | 29

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-proxy.html#cli-configure-proxy-ec2

echo '{"HttpProxy": "http://<proxy-ip:port>"}' | sudo tee /etc/replicated.conf
(cat <<'EOF'
export HTTP_PROXY=<proxy-ip:port>
export HTTPS_PROXY=<proxy-ip:port>
EOF
) | sudo tee -a /etc/circle-installation-customizations

systemctl restart replicated*

If you run in Amazon’s EC2 service then you’ll need to include 169.254.169.254 EC2 services as shown

below:

echo '{"HttpProxy": "http://<proxy-ip:port>"}' | sudo tee /etc/replicated.conf

(cat <<EOF

export HTTP_PROXY=<proxy-ip:port>

export HTTPS_PROXY=<proxy-ip:port>

export NO_PROXY=169.254.169.254,<circleci-service-ip>,127.0.0.1,localhost,ghe.example.com

export JVM_OPTS="-Dhttp.proxyHost=<proxy-ip> -Dhttp.proxyPort=<proxy-port> -Dhttps.proxyHost=<proxy

-ip> -Dhttps.proxyPort=<proxy-port> -Dhttp.nonProxyHosts=169.254.169.254|<circleci-service

-ip>|127.0.0.1|localhost|ghe.example.com"

EOF

) | sudo tee -a /etc/circle-installation-customizations

systemctl restart replicated*


NOTE: If the proxy requires user authentication, you will need to add user authentication

information into <proxy-ip> like below:

export HTTP_PROXY=http://<userid>:<password>@<proxy-ip>:<port>
export HTTPS_PROXY=https://<userid>:<password>@<proxy-ip>:<port>


The above is not handled by by our enterprise-setup script and will need to be added to

the user data for the Services Machine startup or done manually.

Service Machine Proxy Configuration | OPERATIONS GUIDE | 30

Corporate Proxies



When our instructions ask if you use a proxy, you will also be prompted to input the

address. It is very important that you input the proxy in the following format:

<protocol>://<ip>:<port>. If you miss any part, then apt-get won’t work correctly and

the packages won’t download.

Nomad Client Configuration

External Network Calls

CircleCI uses curl and awscli scripts to download initialization scripts, along with jars from Amazon S3. Both

curl and awscli respect environment settings, but if you have allowed traffic from Amazon S3 you should

not have any problems.

Internal Network Calls

• CircleCI JVM:

◦ Any connections to other Nomad Clients or the Services machine should be excluded from HTTP

proxy

◦ Connections to GitHub Enterprise should be excluded from HTTP proxy

• The following contains parts that may be impacted due to a proxy configuration:

◦ Amazon EC2 metadata. This should not be proxied. If it is, then the machine will be misconfigured.

◦ Amazon S3 traffic — note S3 discussion above

◦ Amazon EC2 API - EC2 API traffic may need to be proxied. You would note lots of failures (timeout

failures) in logs if the proxy setting is misconfigured, but it will not block CircleCI from functioning.

Nomad Client Proxy Setup

• If you are installing CircleCI server on AWS using Terraform, you should add the below to your Nomad

client launch configuration – these instructions should be added to /etc/environment.

• If you are using Docker refer to the Docker HTTP Proxy Instructions documentation.

• If you are running a static installation, add the following to the server before installation:

Service Machine Proxy Configuration | OPERATIONS GUIDE | 31

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.docker.com/engine/admin/systemd/#/http-proxy

#!/bin/bash

(cat <<EOF

HTTP_PROXY=<proxy-ip:port>

HTTPS_PROXY=<proxy-ip:port>

NO_PROXY=169.254.169.254,<circleci-service-ip>,127.0.0.1,localhost,ghe.example.com

JVM_OPTS="-Dhttp.proxyHost=<ip> -Dhttp.proxyPort=<port> -Dhttps.proxyHost=<proxy-ip>

-Dhttps.proxyPort=3128 -Dhttp.nonProxyHosts=169.254.169.254|<circleci-service

-ip>|127.0.0.1|localhost|ghe.example.com"

EOF) | sudo tee -a /etc/environment

set -a

. /etc/environment

If your containers need to use a proxy server you will need to set the following schedulerer environment

variables: DOCKER_HTTP_PROXY, DOCKER_HTTPS_PROXY, NO_PROXY, corresponding to those listed in the Docker

instructions. This will ensure your containers have outbound/proxy access. For more information on

creating configuration overrides, see the Customizations Guide.

Troubleshooting

Can’t access the Management Console

If you cannot access the CircleCI Management Console, but the Services machine seems to be running, try

to SSH tunnel into the machine by running the following, substituting your proxy address and the IP address

of your Services machine:

ssh -L 8800:<address you want to proxy through>:8800 ubuntu@<ip_of_services_machine>

REPL time out

If you experience a timeout when connecting to the REPL, you will need to allow access, through your

corporate proxy, to the domains of any Clojure library repositories that are required to download

dependencies for running the REPL.

sudo su
docker exec -it frontend /bin/bash
lein repl :connect 6005

Refer to the error output for guidance on which repositories need to be granted access. The list will be

different for each corporate proxy, but following is an example list:

• repo1.maven.org

• build.clojure.org

• clojars.org

Service Machine Proxy Configuration | OPERATIONS GUIDE | 32

https://docs.docker.com/network/proxy/
https://docs.docker.com/network/proxy/

• repo.clojars.org

Data Persistence

Contact CircleCI Support to discuss externalizing services for data persistence.

Data Persistence | OPERATIONS GUIDE | 33

https://support.circleci.com/hc/en-us

Authentication

This document describes the various ways users of your CircleCI server v2.x installation can get access and

authenticate their accounts. CircleCI server v2.x supports OAuth and LDAP as authentication methods.

OAuth with GitHub/GitHub Enterprise

The default method for user account authentication in CircleCI server is through GitHub.com/GitHub

Enterprise OAuth.

After your installation is up and running, provide users with a link to access the application - for example

<your-circleci-hostname>.com – and it will prompt them to set up an account by running through the

GitHub/GitHub Enterprise OAuth flow. The application will then redirect them to the CircleCI login screen.

Figure 10. CircleCI Server v2.x Login Screen

LDAP

As an alternative to the OAuth/GitHub option, you can choose LDAP authentication. Many organizations

use a LDAP server to centralize all their identity information in a single place. This section describes how to

enable, configure, and test CircleCI to authenticate users with OpenLDAP or Active Directory credentials.



Enabling LDAP will disable other authentication methods. CircleCI does not recommmend

to turn on LDAP Authentication for existing installations that previously had users

authenticating with GitHub. Consider contacting your account team if you need to switch

to LDAP for an existing installation.

OAuth with GitHub/GitHub Enterprise | OPERATIONS GUIDE | 34

Prerequisites

• Install and configure your OpenLDAP server or Active Directory.

• Configure GitHub Enterprise or GitHub.com to be the source of organizations and projects to which

users have access.

• Install a new instance of CircleCI server v2.x with no existing users.

Configure LDAP Authentication

This section provides information to configure LDAP. Below is an example configuration to give an idea of

the information types required. The example shows OpenLDAP in use but the settings for Active Directory

are comparable:

LDAP | OPERATIONS GUIDE | 35

Figure 11. LDAP Config Example

LDAP | OPERATIONS GUIDE | 36

These are the steps to configure LDAP in the CircleCI server v2.x management console:

1. Verify access over the LDAP/AD ports to your LDAP/AD servers.

2. Log in as administrator to the Management Console for your newly installed CircleCI instance.

3. Navigate to the Settings page (for example <your-circleci-hostname>.com:8800) and scroll down to

check the Enable LDAP-only Authentication button. Select either OpenLDAP or Active Directory.

4. Fill in your LDAP instance Hostname and port number.

5. Select the encryption type (plain text is insecure and thus not recommended).

6. Fill in the Search user field with the Fully Distinguished Name for a user you authorize to perform search

queries over a LDAP database. Example: cn=<admin>,dc=<example>,dc=<org>.

7. Fill in the Search password field with the LDAP password for a user from the previous step.

8. Fill in the Base DN field with a Distinguished Name for a point in the directory from where CircleCI will

be looking for users/groups. Example: ou=company,dc=example,dc=org

9. Fill in the User search DN field with a Relative Distinguished Name for a point in a directory where

CircleCI will find users. Should be relative to the Base DN provided above. Example: ou=users.

10. Fill in the Username field with a name of an attribute that is the source of usernames for Logging In.

Example: uid (in this case users will have to use their UID for logging in) or mail (in this case users will be

using emails for logging in).

11. Fill in the Email field with the name of an attribute that is the source of a user email. Example: mail

12. Fill in the Group Membership field with a name of an attribute that is the user membership in a

particular group. Example: uniqueMember.

13. Fill in the Group Object Class field with a name of an Object Class that will identify DN as a group.

Example: groupOfUniqueNames

14. (Optional) Fill in the Test username and Test password fields with a test email and password for an

LDAP user you want to test. This is a 3rd party infrastructure and this test option is not always reliable.

15. Save the settings.

Known Issue: Grant Admin Access to User

If you are using LDAP authentication, use one of the following methods to grant admin privileges to a user.

Admin privileges should be automatically granted to the first user accessing a project, but currently there is

a known issue preventing this from happening when LDAP authentication is in use.


Only one of the following methods should be necessary to grant admin access. If you are

unfamiliar with using the REPL, consider contacting customer support before running

these steps.

For a given user by LDAP user name (prior to GitHub account connection, or if they have no GitHub

account):

LDAP | OPERATIONS GUIDE | 37

(-> (circle.repl.mongo/fetch :users :domain-model :where {:login "the-ldap-username"

:first_vcs_authorized_client_id nil} :limit 1)

 (first)

 (circle.model.user/set-fields! {:admin "all"})

 (:analytics-id)

 (circle.services.domain/delete-user-cache))

By GitHub user name (after GitHub account connection, which replaces prior :login value):

(-> (circle.repl.mongo/fetch :users :domain-model :where {:login "the-github-username"} :limit 1)

 (first)

 (circle.model.user/set-fields! {:admin "all"})

 (:analytics-id)

 (circle.services.domain/delete-user-cache))

By analytics ID

(-> (circle.model.user/find-one-by-analytics-id "3b35037c-6eb3-4e41-88e2-3913b2f43d96")
 (circle.model.user/set-fields! {:admin "all"})
 (:analytics-id)
 (circle.services.domain/delete-user-cache))

User Interaction

After setting up LDAP, a user who logs in to CircleCI will be redirected to the Accounts page with a Connect

button that they must use to connect their GitHub account. After they click Connect, an LDAP section with

their user information (for example, their email) on the page will appear and they will be directed to

authenticate their GitHub account. After authenticating their GitHub account users are directed to the Job

page to use CircleCI.



A user who has authenticated with LDAP and is then removed from LDAP/AD will be able

to access CircleCI as long as they stay logged in (because of cookies). As soon as the user

logs out or the cookie expires, they will not be able to log back in. GitHub permissions

define users' ability to see projects or to run builds. Therefore, if GitHub permissions are

synced with LDAP/AD permissions, a removed LDAP/AD user will automatically lose

authorization to view or access CircleCI as well.

Troubleshooting

Troubleshoot LDAP server settings with LDAP search as follows:

ldapsearch -x LLL -h <ldap_address_server>

LDAP | OPERATIONS GUIDE | 38

VM Service

This section outlines how to set up and customize VM service for your CircleCI installation. VM Service

controls how machine executor (Linux and Windows images) and remote Docker jobs are run.


The information on this page is only applicable to installations on AWS. Please contact

your CircleCI account representative to request VM service guidance for a static

installation.

Overview

VM service enables users of CircleCI server, installed on AWS, to run jobs using the Remote Docker

Environment and the machine executor.

Overview | OPERATIONS GUIDE | 39

https://circleci.com/docs/2.0/building-docker-images
https://circleci.com/docs/2.0/building-docker-images
https://circleci.com/docs/2.0/executor-types/#using-machine
https://circleci.com/docs/2.0/executor-types/#using-machine

Figure 12. VM Service Settings


Any changes to management console settings require downtime while the CircleCI

application restarts.

The following sections will run through the settings and options displayed in the VM Service screenshot

Overview | OPERATIONS GUIDE | 40

show above.

To configure VM service, it is best practice to select the AWS EC2 option in the Management Console

Settings. This will allow CircleCI to run remote Docker and machine executor jobs using dedicated EC2

instances.

1. Supply AMIs

You can provide custom Amazon Machine Image (AMIs) for VM service, as described in the sections below.

If you do not provide any custom images, all machine executor and remote Docker jobs will be run on

instances built with one of our default AMIs (listed below), which have Ubuntu 16.04, Docker version

18.06.3 and a selection of common languages, tools, and frameworks. See the picard-vm-image branch of

our image-builder repository for details. To run Windows jobs you must supply a Windows AMI, without

this Windows jobs will fail to run.

Default VM service Linux AMIs

• Ap-northeast-1:ami-0e49af0659db9fc5d

• Ap-northeast-2:ami-03e485694bc2da249

• Ap-south-1:ami-050370e57dfc6574a

• Ap-southeast-1:ami-0a75ff7b28897268c

• Ap-southeast-2:ami-072b1b45245549586

• Ca-central-1:ami-0e44086f0f518ad2d

• Eu-central-1:ami-09cbcfe446101b4ea

• Eu-west-1:ami-0d1cbc2cc3075510a

• Eu-west-2:ami-0bd22dcdc30fa260b

• Sa-east-1:ami-038596d5a4fc9893b

• Us-east-1:ami-0843ca047684abe87

• Us-east-2:ami-03d60a35576647f63

• Us-west-1:ami-06f6efb13d9ccf93d

• Us-west-2:ami-0b5b8ad02f405a909

Customizing and Creating VM Service Images

Customizing the VM service images for your installation will allow you to specify versions of Docker and

Docker Compose, as well as install any additional dependencies that may be part of your CI/CD pipeline.

You can create separate AMIs for jobs that use remote Docker or the machine executor, and for machine you

can specify separate AMIs for Linux and Windows. It’s worth noting that if you choose not to customize the

base Linux image, developers will likely need to configure jobs to run additional install and update steps on

every commit as part of each project’s config.yml file.

From Server v2.18, you can either provide a single custom Linux AMI to use for both machine and remote

Docker jobs using just the field marked '1' below, or, by providing a second custom AMI in the field marked

'2', you can use different settings for each.

1. Supply AMIs | OPERATIONS GUIDE | 41

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://github.com/circleci/image-builder/tree/picard-vm-image/circleci-provision-scripts
https://github.com/circleci/image-builder/tree/picard-vm-image/circleci-provision-scripts
https://github.com/circleci/image-builder/tree/picard-vm-image/circleci-provision-scripts

Figure 13. Custom VM Service Images

Custom Linux AMI

Prerequisites

• Packer (https://packer.io/intro/getting-started/install.html)

• AWS Access Key ID and Secret Access Key

Creating a Custom Linux AMI

1. Clone our image builder repo: https://github.com/circleci/image-builder/tree/picard-vm-image

2. Open aws-vm.json in your editor. This provides a baseline template for building an AMI with Packer. An

AWS access key ID and secret access key are required to upload. You can find more information about

managing AWS authentication with Packer here. If the baseline template is too limited, you can find

additional AWS configuration options here.

3. (Optional) Consider restricting the ami_groups to only within your organization. See the [Packer

documentation](https://packer.io/docs/builders/amazon-ebs.html#ami_groups) for more information on

AMI groups.

4. We provide a list of [pre-configured dependencies](https://github.com/circleci/image-builder/blob/

picard-vm-image/provision.sh). You can customize the provision.sh script to meet the needs of your

environment.

5. Run packer build aws-vm.json

Once your AMI(s) have been created, copy the AMI ID(s) into the relevant field shown in the screenshot

above.

Creating a Windows AMI

Introduced in CircleCI Server v2.18.3

1. Supply AMIs | OPERATIONS GUIDE | 42

https://packer.io/intro/getting-started/install.html
https://github.com/circleci/image-builder/tree/picard-vm-image
https://packer.io/docs/builders/amazon.html#authentication
https://packer.io/docs/builders/amazon.html
https://packer.io/docs/builders/amazon-ebs.html#ami_groups
https://github.com/circleci/image-builder/blob/picard-vm-image/provision.sh
https://github.com/circleci/image-builder/blob/picard-vm-image/provision.sh

Creating a Windows image and specifying it under the VM Service settings lets your users run jobs on

dedicated Windows VMs. To create your Windows image run through the steps listed in our image builder

repo, then copy the generated AMI ID and paste into the Custom Windows VM AMI field in your

Management Console settings, under VM Provider (for example, <your-hostname.com:8800/settings>).


Windows images are built on CircleCI, so we suggest you run through this process once

your installation is up and running. Alternatively you can use any other CircleCI account –

including on our managed Cloud service – to generate the image.

2. Define Instance Types

There are two fields for defining the AWS instance types you wish to use. The first is for the default

instance type, and the second is to set the instance type to use when a Job specifies the large resource

class.

3. On Demand and Preallocated Instances

Remote Docker and machine executor instances are spun up on demand. It is also possible to preallocate

instances to remain up and running, ready for remote Docker and machine jobs to be run (see the last two

fields in figure 1).


If Docker Layer Caching (DLC) is to be used, VM Service instances need to be spun up on-

demand. To ensure this can happen, either ensure any preallocated instances are in use,

or set both remote Docker and machine preallocated instance fields to 0.


When using preallocated instances be aware that a cron job is scheduled to cycle through

these instances once per day to ensure they don’t end up in an unworkable state.

Job and Instance Management

Jobs run using the remote Docker Environment, or the machine executor are scheduled and dispatched by

the Nomad server to your Nomad clients and passed on to remote Docker or machine from there. This

means jobs run on remote Docker and the machine executor can be monitored in the usual way, using the

Nomad CLI. See our Introduction to Nomad Cluster Operation for more about Nomad commands and

terminology.


A cron job is scheduled to cycle all default and preallocated instances at least once per

day to ensure instances do not end up in an unworkable state.

Accessing Remote Docker and machine instances

By default, private IP addresses are used to communicate with VM service instances. If you need to grant

wider access, for example, to allow developers SSH access, this can be set using the checkbox in the VM

Provider Advanced Settings.

2. Define Instance Types | OPERATIONS GUIDE | 43

https://github.com/CircleCI-Public/circleci-server-windows-image-builder
https://github.com/CircleCI-Public/circleci-server-windows-image-builder
https://circleci.com/docs/2.0/docker-layer-caching/

Figure 14. Allowing Access to VM Service Instances

Accessing Remote Docker and machine instances | OPERATIONS GUIDE | 44

Running GPU Executors

This document outlines how to run GPU (graphics processing unit) machine executors using CircleCI server.

Prerequisites

Configure the vm-service in the Replicated management console to start a GPU-enabled instance.

Overview

Run the following commands on any Nvidia GPU-enabled instance. The following example uses CUDA 8.0,

but you can use any CUDA runtime version supported by your GPU instance.

wget https://developer.nvidia.com/compute/cuda/8.0/prod/local_installers/cuda-repo-ubuntu1404-8-0-

local_8.0.44-1_amd64-deb

sudo apt-get update

export OS_RELEASE=$(uname -r)

sudo apt-get install -y linux-image-extra-$OS_RELEASE linux-headers-$OS_RELEASE linux-image-

$OS_RELEASE

sudo dpkg -i cuda-repo-ubuntu1404-8-0-local_8.0.44-1_amd64-deb

sudo apt-get update

sudo apt-get --yes --force-yes install cuda

nvidia-smi

nvidia-smi is only required for testing purposes. After you install the CUDA driver in Step 7 you should be

good to go!

Adding GPU Steps to an AMI

To avoid start up time associated with the above steps, they may be included in an AMI by following the

instructions in the Configuring VM Service documentation.

Prerequisites | OPERATIONS GUIDE | 45

Setting Up Certificates

This document provides a script for using a custom Root Certificate Authority and the process for using an

Elastic Load Balancing (ELB) certificate.

Using a Custom Root CA

Any valid certificates added to the following path will be trusted by CircleCI services: usr/local/share/ca-
certificates/

The following example openssl command is one way of placing the certificate. It is also possible to pull a

certificate from a vault/PKI solution within your company.

Some installation environments use internal Root Certificate Authorities (RCAs) for encrypting and

establishing trust between servers. If you are using a customer Root certificate, you will need to import and

mark it as a trusted certificate at CircleCI GitHub Enterprise instances. CircleCI will respect such trust when

communicating with GitHub and webhook API calls.

CA Certificates must be in a format understood by Java Keystore, and include the entire chain.

The following script provides the necessary steps:

GHE_DOMAIN=github.example.com

Grab the CA chain from your GitHub Enterprise deployment.

openssl s_client -connect ${GHE_DOMAIN}:443 -showcerts < /dev/null | sed -ne '/-BEGIN CERTIFICATE-

/,/-END CERTIFICATE-/p' > /usr/local/share/ca-certificates/ghe.crt

Then, navigate to the system console at port 8800 and change the protocol to upgraded. You can change

the protocol to HTTPS (TLS/SSLEnabled) setting and restart the services. When trying Test GitHub

Authentication you should get Success now rather than x509 related error.

Setting up ELB Certificates

CircleCI requires the following steps to get ELB certificates working as your primary certs. The steps to

accomplish this are below. You will need certificates for the ELB and CircleCI server v2.x as described in the

following sections.

 Opening the port for HTTP requests will allow CircleCI to return a HTTPS redirect.

 From Server v2.19.02 and up, Classic Load Balancer (CLB) is no longer supported.

Using a Custom Root CA | OPERATIONS GUIDE | 46

1. Open the following ports on your ELB:

Load Balancer

Protocol

Load Balancer

Port

Instance

Protocol

Instance Port Cipher SSL Certificate

HTTP 80 HTTP 80 N/A N/A

SSL 443 SSL 443 Change your-cert

SSL 3000 SSL 3000 Change your-cert

HTTPS 8800 HTTPS 8800 Change your-cert

SSL 8081 SSL 8081 Change your-cert

SSL 8082 SSL 8082 Change your-cert

2. Add the following security group on your ELB:



The sources below are left open so that anybody can access the instance over these

port ranges. If that is not what you want, then feel free to restrict them. Users will

experience reduced functionality if your stakeholders are using IP addresses outside

of the Source Range.

Type Protocol Port Range Source

SSH TCP 22 0.0.0.0

HTTPS TCP 443 0.0.0.0

Custom TCP Rule TCP 8800 0.0.0.0

Custom TCP Rule TCP 64535-65535 0.0.0.0

3. Next, in the management console for CircleCI, upload a valid certificate and key file to the Privacy

Section. These don’t need to be externally signed or even current certs as the actual cert management is

done at the ELB. But, to use HTTPS requests, CircleCI requires a certificate and key in which the

"Common Name (FQDN)" matches the hostname configured in the admin console.

4. It is now possible to set your GitHub Authorization Callback to https rather than http.

Using Self-Signed Certificates

Because the ELB does not require a current certificate, you may choose to generate a self-signed certificate

with an arbitrary duration.

1. Generate the certificate and key using openssl command openssl req -newkey rsa:2048 -nodes -keyout
key.pem -x509 -days 1 -out certificate.pem

2. Provide the appropriate information to the prompts.

 The Common Name provided must match the host configured in CircleCI.

3. Save the certificate.pem and key.pem file locally.

Setting up ELB Certificates | OPERATIONS GUIDE | 47

Setting up TLS/HTTPS on CircleCI Server

You may use various solutions to generate valid SSL certificate and key file. Two solutions are provided

below.

Using Certbot

This section describes setting up TLS/HTTPS on your server v2.x install using Certbot by manually adding a

DNS record set to the Services machine. Certbot generally relies on verifying the DNS record via either port

80 or 443, however this is not supported on CircleCI server installations as of v2.2.0 because of port

conflicts.

1. Stop the Service CircleCI server Management Console (<circleci-hostname>:8800).

2. SSH into the Services machine.

3. Install Certbot and generate certificates using the following commands:

sudo apt-get update
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:certbot/certbot
sudo apt-get update
sudo apt-get install certbot
certbot certonly --manual --preferred-challenges dns

4. You will be instructed to add a DNS TXT record.

5. After the record is successfully generated, save fullchain.pem and privkey.pem locally.

If you are using Route 53 for your DNS records, adding a TXT record is straightforward. When you’re

creating a new record set, be sure to select type → TXT and provide the appropriate value enclosed in

quotes.

Adding the certificate to CircleCI server

Once you have a valid certificate and key file in .pem format, you must upload it to CircleCI Server.

1. To do so, navigate to hostname:8800/console/settings

2. Under "Privacy" section, check the box for "SSL only (Recommended)"

3. Upload your newly generated certificate and key

4. Click "Verify TLS Settings" to ensure everything is working

5. Click "Save" at the bottom of the settings page and restart when prompted

Ensure the hostname is properly configured from the Management Console (<circleci-hostname>:8800) and

that the hostname used matches the DNS records associated with the TLS certificates.

Make sure the Auth Callback URL in GitHub/GHE matches the domain name pointing to the Services

machine, including the protocol used, for example https://info-tech.io/.

Setting up TLS/HTTPS on CircleCI Server | OPERATIONS GUIDE | 48

Adding the certificate to Replicated

The Replicated Management Console (<circleci-hostname>:8800) runs on a different web server, so you

also need to apply the certificate used above for Replicated. To do so, follow these steps:

1. Navigate to <circleci-hostname>:8800/console/settings#tls-key-cert

2. Upload your newly generated certificate and key.

3. Click Save at the bottom of the page and restart the Replicated UI when prompted.

When the TLS certificate has expired and you can not access the Replicated UI using the domain name, you

will still be able to access the Replicated UI using the IP address. Then, you can update the TLS certificate

and key from the UI.

Alternatively, you can upload the certificate and key by running the following command on the Services

machine, substituting your hostname, path-to-key and path-to-certificate:

$ sudo replicated console cert set <circleci-hostname> /path/to/key /path/to/cert
$ replicatedctl app stop
$ replicatedctl app start

Setting up TLS/HTTPS on CircleCI Server | OPERATIONS GUIDE | 49

Managing User Accounts in Server Installations

This section provides information to help system administrators of self-hosted CircleCI server installations

manage accounts for their users. For an overview of user accounts, view the Admin settings overview from

the CircleCI app by clicking on your profile in the top right corner and selecting Admin. This overview

provides the active user count and the total number of licensed users.

Figure 15. Admin Settings – Account Overview

Suspending Accounts

When an account is no longer required, you can suspend the account so it will no longer be active and will

not count against your license quota. To suspend an account:

1. Navigate to your CircleCI Admin Settings

2. Select Users from the Admin Settings menu

3. Scroll to locate the account in either the Active or Inactive window

4. Click Suspend next to the account name and the account will appear in the Suspended window

Suspending Accounts | OPERATIONS GUIDE | 50

Figure 16. Suspending an Account

Reactivating a Suspended User Account

To reactivate an account that has been suspended:

1. Navigate to your CircleCI Admin Settings

2. Select Users from the Admin Settings menu

3. View the Suspended window

4. Click on Activate next to the User you wish to grant access and the account will appear in the Active

window

Figure 17. Rectivate Existing Users

Reactivating a Suspended User Account | OPERATIONS GUIDE | 51

Controlling Account Access

Any user associated with your GitHub.com or GitHub Enterprise organization can create a user account for

your CircleCI installation. In order to control who has access, you can automatically suspend all new users,

requiring an administrator to activate them before they can log in. To access this feature:

1. Navigate to your CircleCI Admin Settings

2. Select System Settings from the Admin Settings menu

3. Set Suspend New Users to True

Figure 18. Auto Suspend New Users

Activating a Suspended New User Account

To activate an new account that was automatically suspended, and allow the associated user access to your

installation of CircleCI server:

1. Navigate to your CircleCI Admin Settings

2. Select Users from the Admin Settings menu

3. View the Suspended New Users window

4. Click on Activate next to the User you wish to grant access and the account will appear in the Active

window

Controlling Account Access | OPERATIONS GUIDE | 52

Figure 19. Activate a Suspended New User

Limit User Registrations by GitHub Organization

When using github.com, you can limit who can register with your CircleCI install to people with some

connection to your approved organizations list. To access this feature:

1. Navigate to your CircleCI Admin Settings page

2. Select System Settings from the Admin Setting menu

3. Scroll down to Required Org Membership List

4. Enter the organization(s) you wish to approve. If entering more than one organization, use a comma

delimited string

Figure 20. Organization Membership

Controlling Account Access | OPERATIONS GUIDE | 53


Any form of organization membership is within the scope of this approval feature, and it

does not stop users from running builds associated with other organizations they may

belong to.

Full User List

To view a full list of users for your CircleCI server installation, first SSH into your Services machine, and then

run:

(circle.model.user/where { :$and [{:sign_in_count {:$gte 0}}, {:login {:$ne nil}}]} :only [:login])

Deleting a User


If you have at any point changed your GitHub/Enterprise hostname associated with

CircleCI, contact your account team before attempting to remove a user.

If you need to remove a user from your installation of CircleCI server, you will need to SSH into the services

machine first and then delete using the following command, substituting the user’s GitHub username:

(circle.http.api.admin-commands.user/delete-by-login-vcs-type! "github-username-of-user" :github)

Controlling Account Access | OPERATIONS GUIDE | 54

Build Artifacts

Build artifacts persist data after a job is completed. They can be used for longer-term storage of your build

process outputs. For example, when a Java build/test process finishes, the output of the process is saved as

a .jar file. CircleCI can store this file as an artifact, keeping it available long after the process has finished.

Safe and Unsafe Content Types

By default, only pre-defined artifact types are allowed. This protects users from uploading, and potentially

executing malicious content. The 'allowed-list' is as follows:

Category Safe Type

Text Plain

Application json

Image png

Image jpg

Image gif

Image bmp

Video webm

Video ogg

Video mp4

Audio webm

Audio aac

Audio mp4

Audio mpeg

Audio ogg

Audio wav

Safe and Unsafe Content Types | OPERATIONS GUIDE | 55

Also, by default, the following types will be rendered as plain text:

Category Type

Text html

Text css

Text javascript

Text ecmascript

Application javascript

Application ecmascript

Text xml

Allow Unsafe Content types

If you would like to allow content types that are not included in the list above, follow these steps:

1. Navigate to the CircleCI Management Console (for example, <your-circleci-hostname>:8800/settings)

and select Settings from the menu bar.

2. Scroll down to find the Artifacts section.

3. Select Serve Artifacts with Unsafe Content-Types.

Figure 21. Allow Unsafe Content Types

4. Click Save at the bottom of the page and Restart Now in the pop-up to save your changes and restart

the console.


Any change to the settings within the Management Console will incur downtime as the

console will need to be restarted.

Allow Unsafe Content types | OPERATIONS GUIDE | 56

Enabling Usage Statistics

This chapter is for System Administrators who want to automatically send some aggregate usage statistics

to CircleCI. Usage statistics data enhances visibility into CircleCI installations.

To opt-in to this feature, navigate to your Management Console settings (e.g. circleci-

hostname.com:8800/settings) and scroll down to Usage Statistics. Enable the radio button labeled

Automatically send some usage statistics to CircleCI, as shown below.

Figure 22. Usage Statistics Settings

Detailed Usage Statistics

The following sections provide information about the usage statistics CircleCI will gather when this setting is

enabled.

Weekly Account Usage

Name Type Purpose

account_id UUID Uniquely identifies each vcs account

usage_current_macos minutes For each account, track weekly

builds performed in minutes.

usage_legacy_macos minutes

usage_current_linux minutes

usage_legacy_linux minutes

Detailed Usage Statistics | OPERATIONS GUIDE | 57

Weekly Job Activity

Name Type Purpose

utc_week date Identifies which week the

data below applies to

usage_oss_macos_legacy minutes Track builds performed by

week

usage_oss_macos_current minutes

usage_oss_linux_legacy minutes

usage_oss_linux_current minutes

usage_private_macos_legacy minutes

usage_private_macos_current minutes

usage_private_linux_legacy minutes

usage_private_linux_current minutes

new_projects_oss_macos_legacy sum Captures new Builds

performed on 1.0. Observe

if users are starting new

projects on 1.0.

new_projects_oss_macos_current sum

new_projects_oss_linux_legacy sum

new_projects_oss_linux_current sum

new_projects_private_macos_legacy sum

new_projects_private_macos_current sum

new_projects_private_linux_legacy sum

new_projects_private_linux_current sum

projects_oss_macos_legacy sum Captures Builds performed

on 1.0 and 2.0. Observe if

users are moving towards

2.0 or staying with 1.0.

projects_oss_macos_current sum

projects_oss_linux_legacy sum

projects_oss_linux_current sum

projects_private_macos_legacy sum

projects_private_macos_current sum

projects_private_linux_legacy sum

Detailed Usage Statistics | OPERATIONS GUIDE | 58

Name Type Purpose

projects_private_linux_current sum

Accessing Usage Data

If you would like programatic access to this data in order to better understand your users you may run this

command from the Services VM.

docker exec usage-stats /src/builds/extract

Security and Privacy

Please reference exhibit C within your terms of contract and our standard license agreement for our

complete security and privacy disclosures.

Accessing Usage Data | OPERATIONS GUIDE | 59

https://circleci.com/legal/enterprise-license-agreement/

Configuring the JVM Heap Size

The JVM heap size is configurable for the following containers: frontend, test-results, output-processing

and contexts-service. You might want to consider increasing the heap size if you see "out of memory"

errors, such as: Terminating due to java.lang.OutOfMemoryError: Java heap space.

Setting up

To be able to configure the JVM_HEAP_SIZE value for each container, you will first need to create

customizations files on your services machine.

1. Create customizations files:

/etc/circleconfig/frontend/customizations
/etc/circleconfig/test-results/customizations
/etc/circleconfig/output-processor/customizations
/etc/circleconfig/contexts-service/customizations

2. In each customization file add the line below to export your desired JVM heap size:

export JVM_HEAP_SIZE=2g

3. Stop and restart CircleCI application from the Management Console dashboard (for example, your-

circleci-hostname.com:8800)

Verify customization is applied

Once your installation has successfully restarted, you can confirm the configured value was applied correctly

by running the following REPL commands per container:

• frontend

sudo docker exec -it frontend lein repl :connect 6005

• test-results

sudo docker exec -it test-results lein repl :connect 2719

• output-processing

sudo docker exec -it picard-output-processor lein repl :connect 6007

Setting up | OPERATIONS GUIDE | 60

And following are the outputs you should see:

(System/getenv "JVM_HEAP_SIZE") ;; should return what you have set above

(-> (java.lang.Runtime/getRuntime) (.maxMemory)) ;; return value should match with JVM_HEAP_SIZE

Verify customization is applied | OPERATIONS GUIDE | 61

SSH Rerun Architecture in Server

This section describes how SSH reruns work within installations of CircleCI server. This information is

designed to help system administrators have an overview to help with considerations when customizations

are made to an installation. This guide is also here to help with debugging in the event of a problem with

SSH reruns in an installation.

Rerunning a Job with SSH

For an overview of the purpose of SSH reruns in CircleCI, see the Debugging with SSH guide. The image

below describes the IP addresses and ports used to restart jobs within VMs and containers when a rerun

with SSH is requested.

The default situation for a server installation with no customizations is for the outer agent to use AWS

metadata to select the instance’s public IP address.

If any networking customizations are made from the default that either block the metadata endpoint or

make the public IP unsuitable, then creating a file at /etc/circleci/public-ipv4 can be used as an override.

This file should be created on each Nomad Client, usually via a boot script, and be populated with the IP

address that should be used to connect. As an example, the following script uses the instance private IP

from AWS metadata:

#!/bin/sh
PRIVATE_IP="$(curl http://169.254.169.254/latest/meta-data/local-ipv4)"
mkdir -p /etc/circleci
echo $PRIVATE_IP | tee /etc/circleci/public-ipv4

Figure 23. SSH Rerun Architecture

Rerunning a Job with SSH | OPERATIONS GUIDE | 62

ssh-access-jobs.pdf

Maintenance

This chapter describes system checks and the basics of user management.

System Checks

When are executor instances created and destroyed?

Answer: CircleCI creates a new instance for each job. The instance will be destroyed at the end of the job.

However, given that cloud instance creation may take significant time (~1 to 3 minutes), CircleCI offers a

pre-scale option, where a set number of instances will be created in anticipation of demand. These will be

killed at the end of the job. The number of pre-scaled instances is configured in the settings section of the

Management Console.

At any given time, CircleCI expects to have a base of pre-scaled instances and the required instances to

service current job load.

When are executor instances reused?

Answer: Machine executor VMs never get reused for multiple jobs. EBS Volumes are reused for multiple

jobs, but only get shared among jobs within the same project.

How are EBS volumes managed?

Answer: Since docker layers can be large (GBs), CircleCI prefers caching by using attached EBS volumes to

using an object storage (for example, S3). Volumes are created when a job is configured to use docker layer

caching (for example, set docker_layer_caching: true in config). Note: For docker layer caching to work,

you cannot use preallocated instances. You must set the remote docker and/or machine executor

(depending on which one you want to use DLC, or both) to 0 in the replicated settings for "on-demand"

instances. Otherwise, DLC will not work.

CircleCI reuses any existing available volume for that job project. If there is none (or all existing volumes are

busy), CircleCI creates a new volume for the project. Volumes are associated with a project. No two project

jobs can share an EBS volume for security reasons. CircleCI deletes EBS volumes in few circumstances (for

example, when there is a risk of running out of disk space).

Can the amount of EBS volumes and EC2 instances be bounded?

Answer: Not at this time. You may utilize the metrics provided to alert when reaching a specific threshold.

How do you prevent executors from existing indefinitely?

Answer: A process runs that periodically detects and stops any leaked VMs (for example, a task completed

but it’s VM is running for over N hours). You may also manually inspect instances that have been running for

over 24 hours (CircleCI currently does this as well). You may also utilize the metrics provided to alert when

stale VMs are detected.

Where can I find the audit log(s)?

Answer: The Audit logs are found at the root of your object storage installation under /audit-

System Checks | OPERATIONS GUIDE | 63

logs/audit_log/v1. Audit Log Service (as of CircleCI v2.13) handles the storage of audit log events. Services

running within a cluster may fire audit events that are then captured by this service and persisted to the

provisioned Storage mechanism for AWS S3 and On-Host.

What do the audit log files contain?

Answer: A JSON representation of event(s) for the period of time since the last file created (each file starts

with a timestamp and is generally an hourly period). For example;

{
 "id":"27aa77e3-0255-4464-93ad-f8236533ab53",
 "version":1,
 "action":"workflow.job.finish",
 "success":true,
 "payload":{
 "job":{
 "id":"e8cef7c4-60d4-429b-8c94-09c05f309408",
 "contexts":[],
 "job_name":"remote_docker",
 "job_status":"success"
 },
 "workflow":{
 "id":"c022ca3c-5f6f-41ba-a6ca-05977f6a336a",
 "vcs_branch":"main"
 }
 },
 "target":{
 "id":"3c4886e1-b810-4765-a1a2-d588e6e4b9cb",
 "type":"project"
 },
 "request":{
 "id":""
 },
 "actor":{
 "id":"27075c88-9ba4-47d7-8523-fa576e839bfd",
 "type":"user"
 },
 "scope":{
 "id":"3c4886e1-b810-4765-a1a2-d588e6e4b9cb",
 "type":"project"
 }
}

System Checks | OPERATIONS GUIDE | 64

What action types are there?

Answer:

context.create
context.delete
context.env_var.delete
context.env_var.store
project.add
project.follow
project.settings.update
project.stop_building
project.unfollow
user.create
user.logged_in
user.logged_out
user.suspended
workflow.error
workflow.job.context.request
workflow.job.finish
workflow.job.scheduled
workflow.job.start
workflow.retry
workflow.start

How can I access the files and do something with them?

Answer:

1. Set up the awscli and jq or another JSON processor for your OS.

2. In this example, grep for all workflow.job.start events.

#!/bin/bashBUCKET=YOUR-BUCKET-NAME

for key in `aws s3api list-objects --bucket BUCKET --prefix audit-logs/audit_log/v1/ --output

json | jq -r '.Contents[].Key'`;

do

echo $key;

aws s3 cp --quiet s3://BUCKET/$key - | grep workflow.job.start;

done

System Checks | OPERATIONS GUIDE | 65

How do I ensure proper injection of Internal CA Certificate?

Answer: If using an internal CA, or self-signed certificate, you must ensure the signing certificate is trusted

by the domain service to properly connect to GitHub Enterprise.

1. The Domain Service uses a Java Truststore, loaded with Keytool. Must match the formats supported by

that tool.

2. You need the full CA chain, not just root/intermediate certificates.

3. The CA certificate chain should be saved in /usr/local/share/ca-certificates/

Security and Access Control

CircleCI conducts ongoing security checks, for example, CircleCI containers are scanned by TwistLock prior

to being published. CircleCI does not conduct ongoing security checks of your environment.

What kind of security is in place for passwords and Personally Identifiable
Information (PII)? Are the passwords hashed with a strong hash function and salted?

Answer: Passwords are hashed with a 10-character salt and SHA265, refer to the Security chapter for more

details.

How will the Host and Nomad clients be monitored for security issues?

Answer: Your internal security teams are responsible for monitoring the Host and Nomad clients installed in

your private datacenter or cloud. CircleCI containers are scanned by TwistLock prior to being published.

System Configuration

How is configuration managed for the system?

Answer: Replicated Management Console handles all of the post-installation configuration. Installation-

specific configuration is managed by Terraform or Shell scripts.

How are configuration secrets managed?

Answer: Configuration secrets are stored in plain-text on the host.

Metrics

What significant metrics will be generated?

Answer: Refer to the Monitoring section for details about monitoring and metrics.

How do I find out how many builds per day are running?

Answer:

Security and Access Control | OPERATIONS GUIDE | 66

use <database>
var coll = db.builds
var items = coll.find({
 "start_time": {
 $gte: ISODate("2018-03-15T00:00:00.000Z"),
 $lt: ISODate("2018-03-16T00:00:00.000Z")
 }
})
items.count()

Usage Statistics

How do I find the usage statistics?

Answer:

docker exec server-usage-stats /src/builds/extract

Health Checks

How is the health of dependencies (components and systems) assessed? How does
the system report its own health?

Answer: Ready Agent can be used to determine the health of the system. Replicated looks to the server-

ready-agent API for a 200 response. server-ready-agent waits to receive a 200 from all listed services,

reporting a 5XX until all services come online and then it reports a 200. You can tail the logs to determine

current and final state as follows:

docker logs -f ready-agent

Health of Service

Each documented service provides /health-check, /healthcheck, /status HTTP endpoint: 200 indicates

basic health, 500 indicates bad configuration. To determine the health of individual services you must ssh

into your Services VM (where all the containers are running) and make the request. The current list of

services that expose a check are listed below:

• Frontend localhost:80/health-check

• API Service localhost:8082/status

• Workflows Conductor localhost:9999/healthcheck

• Federations Service localhost:8090/status

Usage Statistics | OPERATIONS GUIDE | 67

• Permissions Service localhost:3013/status

• Context Service localhost:3011/status

• Domain Service localhost:3014/status

• Cron Service localhost:4261/status

• VM Service* localhost:3001/status

* if enabled

As an example, following is how you would determine if the frontend is healthy:

curl -s -o /dev/null -I -w "%{http_code}\n" 0.0.0.0:80/health-check

Health of Dependencies

Use /health HTTP endpoint for internal components that expose it. Other systems and external endpoints:

typically use HTTP 200 except some synthetic checks for some services.

Operational Tasks

How is the software deployed? How does rollback happen?

Answer: CircleCI uses Enterprise-Setup Terraform or Static bash scripts for deployments, Replicated is

installed and orchestrates pulling all containers into your VPC. Rollbacks can only occur by reloading a

previous backup and are not possible through Replicated.

What kind of scaling events take place?

Answer: Vertically scaling Service and Nomad clients is possible with downtime, Horizontally scaling Nomad

Clients is possible without downtime. Refer to the Monitoring section of the Configuration chapter for

details.

What kind of checks need to happen on a regular basis?

Answer: All /health endpoints should be checked every 60 seconds including the Replicated endpoint.

Troubleshooting

How should troubleshooting happen? What tools are available?

Answer:

It is worth noting two things. First is that the REPL is a extremely powerful tool that can cause irreparable

damage to your system when used improperly. We cannot guarantee that any of the repl commands

outside of this guide are safe to run, and do not support custom repl being run in our shell. The second

thing is that in order to run any of our commands you’ll need to run the following commands below:

1. ssh into services box

Operational Tasks | OPERATIONS GUIDE | 68

2. run circleci dev-console

If the above does not bring you into a REPL that mentions it is the CircleCI Dev-Console you can run the

alternative command.

1. ssh into the services box

2. Run sudo docker exec -it frontend bash

3. Run lein repl :connect 6005

Once you are in the repl, you can copy and paste any of the commands below, and making the necessary

substitutions in order to make the command work.

How do I view all users?

Answer:

(circle.model.user/where { :$and [{:sign_in_count {:$gte 0}}, {:login {:$ne nil}}]} :only [:login])

How do I delete a user?

Answer:

(circle.http.api.admin-commands.user/delete-by-login-vcs-type! "Sirparthington" :github)

How do I make a user an admin?

Answer:

(circle.model.user/set-fields! (circle.model.user/find-one-by-github-login "your-github-username-

here") {:admin "all"})

How do I get user statistics?

Answer: If a if you need some basic statistics (name, email, sign in history) for your users, run the following

REPL commands:

• All Time

circleci dev-console

(circle.model.user/where {} :only [:name :login :emails :admin :dev_admin :activated :sign_in_count

:current_sign_in_at :current_sign_in_ip :last_sign_in_at :last_sign_in_ip])

• Last Month

Troubleshooting | OPERATIONS GUIDE | 69

(circle.model.user/where

 {:last_sign_in_at {:$gt (clj-time.core/minus (clj-time.core/now) (clj-time.core/months 1))}}

 :only

 [:name :login :emails :admin :dev_admin :activated :sign_in_count :current_sign_in_at

:current_sign_in_ip :last_sign_in_at :last_sign_in_ip])

How do I create a new admin?

Answer: By default, the first user to access the CircleCI server installation after it is started becomes the

admin.

Options for designating additional admin users are found under the Users page in the Admin section at

https://[domain-to-your-installation]/admin/users.

In the event the admin is unknown, or has left the company without creating a new admin, you can promote

a user in the following way:

1. SSH into the services box

2. Open the CircleCI dev console with the command circleci dev-console

3. Run this command (replacing \<username\> with the GitHub username of the person you want to

promote:

(-> (circle.model.user/find-one-by-login "<username>") (circle.model.user/set-fields! {:admin

"write-settings"}))

How do I reset the Management Console password?

Answer: https://www.replicated.com/docs/kb/supporting-your-customers/resetting-console-password/

1. SSH into the services box

2. Use the following command: replicated auth reset to remove the password

3. Visit <server>:8800/create-password to create a new password or connect LDAP.

How do I resolve the case of VM spin-up / spin-down issues?

Answer: Make sure no builds are running that require the remote Docker environment or the machine

executor, and make sure to terminate any running preallocated/remote VM EC2 instances first. Then,

complete the following:

1. SSH into the services box

2. Log into the VM service database in the Postgres container: sudo docker exec -it postgres psql -U
circle vms

3. Delete these records: delete from vms.tasks; delete from vms.volumes; delete from vms.vms;

4. Configure the settings in the management console to on-demand instancing (for example, set to 0 to

prevent preallocated instances from being used)

Troubleshooting | OPERATIONS GUIDE | 70

https://www.replicated.com/docs/kb/supporting-your-customers/resetting-console-password/

5. Terminate all existing vm ec2 instances that are currently running.

6. Run circleci dev-console to REPL in. You should now be able to run the below commands to check

queues.

7. After checking queues with the commands below, change the setting back to their original values.

Queues

Queues may become an issues for you if you are running version 2.10 or earlier. As 1.0 builds pile up and

block any builds from running, run the commands below to get a feeling for how long the queues are. Then,

you can promote builds from the usage-queue to the run-queue or just cancel them from the run queue.

Checking Usage Queue

(in-ns 'circle.backend.build.usage-queue)

(->> (all-builds) count) # Will give you the count for how many builds are in the queue

(->> (all-builds) (take 3) (map deref) (map circle.http.paths/build-url)) # If you want to check the

top three builds at the top of the queue.

(->> (all-builds) reverse (take 3) (map circle.http.paths/build-url)) # If you want to check the

builds at the end of the queue.

If you want to promote builds from the usage queue to the run queue you can do the following:

(let [builds (->> (all-builds)

 (take 3)

 (map circle.http.paths/build-url)

 (map circle.model.build/find-one-by-circle-url))]

 (doseq [b builds]

 (circle.backend.build.usage-queue/forward-build b)))

Its safe to do this by the 100's, but do not put the entire queue in.

Queues | OPERATIONS GUIDE | 71

Checking Run Queue

(circle.backend.build.run-queue/queue-depths) ; returns how many are in the queue

(->> (circle.backend.build.run-queue/all-builds) (take 3) (map circle.http.paths/build-url)) ; Check

the top three builds in the run-queue

;; In case builds are jammed run the following. You can cancel in batches of 100.

(->> (circle.backend.build.run-queue/all-builds) (take 100) (map

circle.backend.build.cancel/cancel!))

 Remember to set values back to original in your settings after checking queues.

Daylight-saving time changes

Is the software affected by daylight-saving time changes (both client and server)?

Answer: No. All date/time data converted to UTC with offset before processing.

Data cleardown

Which data needs to be cleared down? How often? Which tools or scripts control
cleardown?

Answer: If using On-Host storage and Static, all storage should be mounted.

Log rotation

Is log rotation needed? How is it controlled?

Answer: Docker automatically rotates logs.

Replicated Failover and Recovery procedures

What needs to happen when parts of the system are failed over to standby systems?
What needs to happen during recovery?

Answer: Refer to the Backup and Troubleshooting sections of this document for details.

User Management

How do I provision admin users?

Answer: The first user who logs in to the CircleCI application will automatically be designated an admin user.

Options for designating additional admin users are found under the Users page in the Admin section at

https://[domain-to-your-installation]/admin/users.

Daylight-saving time changes | OPERATIONS GUIDE | 72

Backup and Recovery

This chapter describes failover or replacement of the services machine. Refer to the Backup section below

for information about possible backup strategies and procedures for implementing a regular backup image

or snapshot of the services machine.

Disaster Recovery

Specify a spare machine, in an alternate location, with the same specs for disaster recovery of the services

machine. Having a hot spare regularly imaged with the backup snapshot in a failure scenario is best practice.

At the very least, provide systems administrators of the CircleCI installation with the hostname and location

(even if co-located) of an equivalent server on which to install a replacement server with the latest snapshot

of the services machine configuration. To complete recovery, use the Installation procedure, replacing the

image from that procedure with your backup image.

Backing up CircleCI Data

This document describes how to back up your CircleCI application so that you can recover from accidental

or unexpected loss of CircleCI data attached to the Services machine:


If you are running CircleCI in an HA configuration, you must use standard backup

mechanisms for the external datastores. Contact support@circleci.com for more

information document for more information.

Backing up the Database

If you have not configured CircleCI for external services, the best practice for backing up your CircleCI data

is to use VM snapshots of the virtual disk acting as the root volume for the Services machine. Backups may

be performed without downtime as long the underlying virtual disk supports such an operation as is true

with AWS EBS. There is a small risk, that varies by filesystem and distribution, that snapshots taken without

a reboot may have some data corruption, but this is rare in practice.


"Snapshots Disabled" refers to Replicated’s built-in snapshot feature that is turned off by

default.

Backing up Object Storage

Build artifacts, output, and caches are generally stored in object storage services like AWS S3. These

services are considered highly redundant and are unlikely to require separate backup. An exception is if your

instance is setup to store large objects locally on the Services machine, either directly on-disk or on an NFS

volume. In this case, you must separately back these files up and ensure they are mounted back to the same

location on restore.

Snapshotting on AWS EBS

There are a few features of AWS EBS snapshots that make the backup process quite easy:

Disaster Recovery | OPERATIONS GUIDE | 73

mailto:support@circleci.com

1. To take a manual backup, choose the instance in the EC2 console and select Actions > Image > Create

Image.

2. Select the No reboot option if you want to avoid downtime. An AMI that can be readily launched as a

new EC2 instance for restore purposes is created.

It is also possible to automate this process with the AWS API. Subsequent AMIs/snapshots are only as large

as the difference (changed blocks) since the last snapshot, such that storage costs are not necessarily larger

for more frequent snapshots, see Amazon’s EBS snapshot billing document for details.

Restoring From Backup

When restoring test backups or performing a restore in production, you may need to make a couple of

changes on the newly launched instance if its public or private IP addresses have changed:

1. Launch a fresh EC2 instance using the newly generated AMI from the previous steps

2. Stop the app in the Management Console (at port 8800) if it is already running

3. Ensure that the hostname configured in the Management Console at port 8800 reflects the correct

address. If this hostname has changed, you will also need to change it in the corresponding GitHub

OAuth application settings or create a new OAuth app to test the recovery and log in to the application.

4. Update any references to the backed-up instance’s public and private IP addresses in

/etc/default/replicated and /etc/default/replicated-operator on Debian/Ubuntu or

/etc/sysconfig/* in RHEL/CentOS to the new IP addresses.

5. From the root directory of the Services box, run sudo rm -rf /opt/nomad. State is saved in the

/opt/nomad folder that can interfere with builds running when an installation is restored from a backup.

The folder and its contents will be regenerated by Nomad when it starts.

6. Restart the app in the Management Console at port 8800.

Cleaning up Build Records

While filesystem-level data integrity issues are rare and preventable, there will likely be some data

anomalies in a point-in-time backup taken while builds are running on the system. For example, a build that

is only half-way finished at backup time may result in missing the latter half of its command output, and it

may permanently show that it is in Running state in the application.

If you want to clean up any abnormal build records in your database after a recovery, you can delete them

by running the following commands on the Services machine replacing the example build URL with an actual

URL from your CircleCI application:

circleci dev-console
Wait for console to load
user=> (admin/delete-build "https://my-circleci-hostname.com/gh/my-org/my-project/1234")

Restoring From Backup | OPERATIONS GUIDE | 74

https://aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-billing/

Security

This document outlines security features built into CircleCI and related integrations.

Overview

Security is our top priority at CircleCI, we are proactive and we act on security issues immediately. Report

security issues to security@circleci.com with an encrypted message using our security team’s GPG key (ID:

0x4013DDA7, fingerprint: 3CD2 A48F 2071 61C0 B9B7 1AE2 6170 15B8 4013 DDA7).

Encryption

CircleCI uses HTTPS or SSH for all networking in and out of our service, including from the browser to our

services application, from the services application to your builder fleet, from our builder fleet to your source

control system, and all other points of communication. None of your code or data travels to or from CircleCI

without being encrypted, unless you have code in your builds that does so at your discretion. Operators may

also choose to bypass our SSL configuration or not use TLS for communicating with underlying systems.

The nature of CircleCI is that our software has access to your code and whatever data that code interacts

with. All jobs on CircleCI run in a sandbox (specifically, a Docker container or an ephemeral VM) that stands

alone from all other builds and is not accessible from the Internet or from your own network. The build

agent pulls code via git over SSH. Your particular test suite or job configurations may call out to external

services or integration points within your network, and the response from such calls will be pulled into your

jobs and used by your code at your discretion. After a job is complete, the container that ran the job is

destroyed and rebuilt. All environment variables are encrypted using Hashicorp Vault. Environment variables

are encrypted using AES256-GCM96 and are unavailable to CircleCI employees.

Sandboxing

With CircleCI, you control the resources allocated to run the builds of your code. This will be done through

instances of our builder boxes that set up the containers in which your builds will run. By their nature, build

containers will pull down source code and run whatever test and deployment scripts are part of the

codebase or your configuration. The containers are sandboxed, each created and destroyed for one build

only (or one slice of a parallel build), and they are not available from outside themselves. The CircleCI service

provides the ability to SSH directly to a particular build container. When accessing a container this way, a

user will have complete access to any files or processes being run inside that build container. Only provide

CircleCI access to those also trusted with your source code.

Integrations

A few different external services and technology integration points touch CircleCI. The following list

explains those integration points.

• Web Sockets We use Pusher client libraries for WebSocket communication between the server and the

browser. However, for installs we use an internal server called Slanger, so Pusher servers have no access

to your instance of CircleCI nor your source control system. This is how we, for instance, update the

builds list dynamically, or show the output of a build line-by-line as it occurs. We send build status and

lines of your build output through the web socket server (which unless you have configured your

installation to run without SSL is done using the same certs over SSL), so it is encrypted in transit.

Overview | OPERATIONS GUIDE | 75

mailto:security@circleci.com
https://www.vaultproject.io/
https://pusher.com/

• Replicated We use Replicated to manage the installation wizard, licensing keys, system audit logs,

software updates, and other maintenance and systems tasks for CircleCI. Your instance of CircleCI

communicates with Replicated servers to send license key information and version information to check

for updates. Replicated does not have access to your data or other systems, and we do not send any of

your data to Replicated.

• Source Control Systems To use CircleCI you will set up a direct connection with your instance of

GitHub Enterprise or GitHub.com. When you set up CircleCI, you authorize the system to check out

your private repositories. You may revoke this permission at any time through your GitHub application

settings page and by removing Circle’s Deploy Keys and Service Hooks from your repositories' Admin

pages. While CircleCI allows you to selectively build your projects, GitHub’s permissions model is "all or

nothing" — CircleCI gets permission to access all of a user’s repositories or none of them. Your instance

of CircleCI will have access to anything hosted in those git repositories and will create webhooks for a

variety of events (for example, when code is pushed, when a user is added, etc.) that will call back to

CircleCI, triggering one or more git commands that will pull down code to your build fleet.

• Dependency and Source Caches Most CircleCI customers use S3 or equivalent cloud-based storage

inside their private cloud infrastructure (Amazon VPC, etc) to store their dependency and source caches.

These storage servers are subject to the normal security parameters of anything stored on such services,

meaning in most cases our customers prevent any outside access.

• Artifacts It is common to use S3 or similar hosted storage for artifacts. Assuming these resources are

secured per your normal policies, they are as safe from any outside intrusion as any other data you store

there.

Audit Logs

The Audit Log feature is only available for CircleCI installed on your servers or private cloud.

CircleCI logs important events in the system for audit and forensic analysis purposes. Audit logs are separate

from system logs that track performance and network metrics.

Complete Audit logs may be downloaded as a CSV file from the Audit Log page within the Admin section of

the application. Audit log fields with nested data contain JSON blobs. Please note the audit log download

can take a very long time to start; we recommend clicking the Download button once and leaving it to run.

Note: In some situations, the internal machinery may generate duplicate events in the audit logs. The id field

of the downloaded logs is unique per event and can be used to identify duplicate entries.

Audit Log Events

The following are the system events that are logged. See action in the Field section below for the definition

and format.

• context.create

• context.delete

• context.env_var.delete

• context.env_var.store

• context.secrets.accessed

• project.env_var.create

Audit Logs | OPERATIONS GUIDE | 76

http://www.replicated.com/

• project.env_var.delete

• project.settings.update

• user.create

• user.logged_in

• user.logged_out

• workflow.job.approve

• workflow.job.finish

• workflow.job.scheduled

• workflow.job.start

Audit Log Fields

• action: The action taken that created the event. The format is ASCII lowercase words separated by dots,

with the entity acted upon first and the action taken last. In some cases entities are nested, for example,

workflow.job.start.

• actor: The actor who performed this event. In most cases, this will be a CircleCI user. This data is a JSON

blob that will always contain id and and type and will likely contain name.

• target: The entity instance acted upon for this event, for example, a project, an org, an account, or a

build. This data is a JSON blob that will always contain id and and type and will likely contain name.

• payload: A JSON blob of action-specific information. The schema of the payload is expected to be

consistent for all events with the same action and version.

• occurred_at: When the event occurred in UTC expressed in ISO-8601 format with up to nine digits of

fractional precision, for example '2017-12-21T13:50:54.474Z'.

• metadata: A set of key/value pairs that can be attached to any event. All keys and values are strings.

This can be used to add additional information to certain types of events.

• id: A UUID that uniquely identifies this event. This is intended to allow consumers of events to identify

duplicate deliveries.

• version: Version of the event schema. Currently the value will always be 1. Later versions may have

different values to accommodate schema changes.

• scope: If the target is owned by an Account in the CircleCI domain model, the account field should be

filled in with the Account name and ID. This data is a JSON blob that will always contain id and type and

will likely contain name.

• success: A flag to indicate if the action was successful.

• request: If this event was triggered by an external request, this data will be populated and may be used

to connect events that originate from the same external request. The format is a JSON blob containing

id (the unique ID assigned to this request by CircleCI).

Checklist To Using CircleCI Securely as a Customer

If you are getting started with CircleCI, there are some points you can ask your team to consider for security

best practices as users of CircleCI:

Checklist To Using CircleCI Securely as a Customer | OPERATIONS GUIDE | 77

• Minimize the number of secrets (private keys / environment variables) your build needs and rotate

secrets regularly.

◦ It is important to rotate secrets regularly in your organization, especially as team members come and

go.

◦ Rotating secrets regularly means your secrets are only active for a certain amount of time, helping to

reduce possible risks if keys are compromised.

◦ Ensure the secrets you do use are of limited scope, with only enough permissions for the purposes

of your build. Consider carefully adjudicating the role and permission systems of other platforms you

use outside of CircleCI; for example, when using something such as IAM permissions on AWS, or

GitHub’s Machine User feature.

• Sometimes user misuse of certain tools might accidentally print secrets to stdout which will appear in

your logs. Please be aware of:

◦ running env or printenv which will print all your environment variables to stdout.

◦ literally printing secrets in your codebase or in your shell with echo.

◦ programs or debugging tools that print secrets on error.

• Consult your VCS provider’s permissions for your organization (if you are in an organization) and try to

follow the Principle of Least Privilege.

• Use Restricted Contexts with teams to share environment variables with a select security group. Read

through the contexts document to learn more.

• Ensure you audit who has access to SSH keys in your organization.

• Ensure that your team is using Two-Factor Authentication (2FA) with your VCS (Github 2FA, Bitbucket).

If a user’s GitHub or Bitbucket account is compromised a nefarious actor could push code or potentially

steal secrets.

• If your project is open source and public, please make note of whether you want to share your

environment variables. On CircleCI, you can change a project’s settings to control whether your

environment variables can pass on to forked versions of your repo. This is not enabled by default. You can

read more about these settings and open source security in our Open Source Projects Document.

Checklist To Using CircleCI Securely as a Customer | OPERATIONS GUIDE | 78

https://developer.github.com/v3/guides/managing-deploy-keys/#machine-users
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://circleci.com/docs/2.0/contexts/#restricting-a-context
https://help.github.com/en/articles/securing-your-account-with-two-factor-authentication-2fa
https://confluence.atlassian.com/bitbucket/two-step-verification-777023203.html
https://circleci.com/docs/2.0/oss/#security

Troubleshooting Server Installations

This document describes an initial set of troubleshooting steps to take if you are having problems with your

CircleCI installation on your private server. If your issue is not addressed below, you can generate a support

bundle and contact CircleCI Support Engineers by opening a support ticket.

Generating a Support Bundle

To download a support bundle, select Support from the Management Console menu bar, and then select

Download Support Bundle. CircleCI support engineers will often request support bundles to help

diagnose/fix the problem you are experiencing.

Debug Queuing Builds

If your Services component is fine, but builds are not running, or all builds are queueing, follow the steps

below.

1. Check Dispatcher Logs for Errors

Run sudo docker logs dispatcher, if you see log output that is free of errors you may continue on the next

step.

If the logs dispatcher container does not exist or is down, start it by running the sudo docker start

<container_name> command and monitor the progress. The following output indicates that the logs

dispatcher is up and running correctly:

Jan 4 22:38:38.589:+0000 INFO circle.backend.build.run-queue dispatcher mode is on - no need for

 run-queue

Jan 4 22:38:38.589:+0000 INFO circle.backend.build.usage-queue 5a4ea0047d560d00011682dc:

 GERey/realitycheck/37 -> forwarded to run-queue

Jan 4 22:38:38.589:+0000 INFO circle.backend.build.usage-queue 5a4ea0047d560d00011682dc: publishing

 :usage-changed (:recur) event

Jan 4 22:38:39.069:+0000 INFO circle.backend.build.usage-queue got usage-queue event for

 5a4ea0047d560d00011682dc (finished-build)

If you see errors or do not see the above output, investigate the stack traces because they indicate that

there is an issue with routing builds from 1.0 to 2.0. If there are errors in the output, then you may have a

problem with routing builds to 1.0 or 2.0 builds.

If you can run 1.0 builds, but not 2.0 builds, or if you can only run 2.0 builds and the log dispatcher is up and

running, continue on to the next steps.

2. Check Picard-Dispatcher Logs for Errors

Generating a Support Bundle | OPERATIONS GUIDE | 79

https://support.circleci.com/hc/en-us/requests/new

Run the sudo docker logs picard-dispatcher command. A healthy picard-dispatcher should output the

following:

Jan 9 19:32:33 INFO picard-dispatcher.init Still running...
Jan 9 19:34:33 INFO picard-dispatcher.init Still running...
Jan 9 19:34:44 INFO picard-dispatcher.core taking build=GERey/realitycheck/38
Jan 9 19:34:45 INFO circle.http.builds project GERey/realitycheck at revision

2c6179654541ee3d succcessfully fetched and parsed .circleci/config.yml

picard-dispatcher.tasks build GERey/realitycheck/38 is using resource

class {:cpu 2.0, :ram 4096, :class :medium}
picard-dispatcher.tasks Computed tasks for build=GERey/realitycheck/38,

 stage=:write_artifacts, parallel=1
Jan 9 19:34:45 INFO picard-dispatcher.tasks build has matching jobs:

 build=GERey/realitycheck/38 parsed=:write_artifacts passed=:write_artifacts

The output should be filled with the above messages. If it is a slow day and builds are not happening very

often, the output will appear as follows:

Jan 9 19:32:33.629:+0000 INFO picard-dispatcher.init Still running...

As soon as you run a build, you should see the above message to indicate that it has been dispatched to the

scheduler. If you do not see the above output or you have a stack trace in the picard-dispatcher container,

contact support@circleci.com.

If you run a 2.0 build and do not see a message in the picard-dispatcher log output, it often indicates that a

job is getting lost between the dispatcher and the picard dispatcher.

Stop and restart the CircleCI app in the Management Console at port 8800 to re-establish the connection

between the two containers.

3. Check Picard-Scheduler Logs for Errors

Run sudo docker logs picard-scheduler . The picard-scheduler schedules jobs and sends them to nomad

through a direct connection. It does not actually handle queuing of the jobs in CircleCI.

4. Check Nomad Node Status

Check to see if there are any nomad nodes by running the nomad node-status -allocs command and

viewing the following output:

Debug Queuing Builds | OPERATIONS GUIDE | 80

mailto:support@circleci.com

ID DC Name Class Drain Status Running Allocs
ec2727c5 us-east-1 ip-127-0-0-1 linux-64bit false ready 0

If you do not see any nomad clients listed, please consult our <nomad#,Introduction to Nomad Cluster

Operation> for more detailed information on managing and troubleshooting the nomad server.


DC in the output stands for datacenter and will always print us-east-1 and should be left

as such. It doesn’t affect or break anything. The things that are the most important are the

Drain, Status, and Allocs columns.

• Drain - If Drain is true then CircleCI will not route jobs to that nomad client. It is possible to change this

value by running the following command nomad node-drain [options] <node>. If you set Drain to true, it

will finish the jobs that were currently running and then stop accepting builds. After the number of

allocations reaches 0, it is safe to terminate instance. If Drain is set to false it means the node is

accepting connections and should be getting builds.

• Status - If Status is ready then it is ready to accept builds and should be wired up correctly. If it is not

wired up correctly it will not show ready and it should be investigated because a node that is not

showing ready in the Status will not accept builds.

• Allocs - Allocs is a term used to refer to builds. So, the number of Running Allocs is the number of builds

running on a single node. This number indicates whether builds are routing. If all of the Builders have

Running Allocs, but your job is still queued, that means you do not have enough capacity and you need

to add more Builders to your fleet.

If you see output like the above, but your builds are still queued, then continue to the next step.

5. Check Job Processing Status

Run the sudo docker exec -it nomad nomad status command to view the jobs that are currently being

processed. It should list the status of each job as well as the ID of the job, as follows:

ID Type Priority Status
5a4ea06b7d560d000116830f-0-build-GERey-realitycheck-1 batch 50 dead
5a4ea0c9fa4f8c0001b6401b-0-build-GERey-realitycheck-2 batch 50 dead
5a4ea0cafa4f8c0001b6401c-0-build-GERey-realitycheck-3 batch 50 dead

After a job has completed, the Status shows dead. This is a regular state for jobs. If the status shows running,

the job is currently running. This should appear in the CircleCI app builds dashboard. If it is not appearing in

the app, there may be a problem with the output-processor. Run the docker logs picard-output-processor

command and check the logs for any obvious stack traces.

• If the job is in a constant pending state with no allocations being made, run the sudo docker exec -it

nomad nomad status JOB_ID command to see where Nomad is stuck and then refer to standard Nomad

Cluster error documentation for information.

• If the job is running/dead but the CircelCI app shows nothing:

◦ Check the Nomad job logs by running the sudo docker exec -it nomad nomad logs --stderr --job

Debug Queuing Builds | OPERATIONS GUIDE | 81

JOB_ID command.

◦ Run the picard-output-processor command to check those logs for specific errors.

 The use of --stderr is to print the specific error if one exists.

Why do my Jobs stay in queued status until they fail and never
successfully run?

If the nomad client logs contain the following error message typw, check port 8585:

{"error":"rpc error: code = Unavailable desc = grpc: the connection is

unavailable","level":"warning","msg":"error fetching config, retrying","time":"2018-04-

17T18:47:01Z"}

Why is the cache failing to unpack?

If a restore_cache step is failing for one of your jobs, it is worth checking the size of the cache - you can

view the cache size from the CircleCI Jobs page within the restore_cache step. We recommend keeping

cache sizes under 500MB – this is our upper limit for corruption checks because above this limit check times

would be excessively long. Larger cache sizes are allowed but may cause problems due to a higher chance of

decompression issues and corruption during download. To keep cache sizes down, consider splitting into

multiple distinct caches.

How do I get around the API service being impacted by a high thread
count?

Disable cache warming by completing the following steps:

1. Add the export DOMAIN_SERVICE_REFRESH_USERS=false flag to the `/etc/circleconfig/api-

service/customizations file on the Services machine. For more information on configuration overrides,

see the guide to Service Configuration Overrides.

2. Restart CircleCI:

1. Navigate to the Management Console

2. Click Stop Now and wait for it to stop

3. Click Start

Why do my Jobs stay in queued status until they fail and never successfully run? | OPERATIONS GUIDE | 82

Frequently Asked Questions

This document is intended for system administrators of self-hosted installations of CircleCI Server.

This chapter answers frequently asked questions and provides installation troubleshooting tips.

Can I move or change my GitHub Enterprise URL without downtime?

No, because of the nature of CircleCI integration with GitHub authentication, you should not change the

domain of your GHE instance after CircleCI is in production. Redeploying GitHub without will result in a

corrupted CircleCI instance. Contact support if you plan to move your GitHub instance.

Can I monitor available build containers?

Yes, refer to the Introduction to Nomad Cluster Operation section for details. Refer to the Monitoring Your

Installation section for how to enable additional container monitoring for AWS.

How do I provision admin users?

The first user who logs in to the CircleCI application will automatically be designated an admin user. Options

for designating additional admin users are found under the Users page in the Admin section at

https://[domain-to-your-installation]/admin/users.

How can I gracefully shutdown Nomad Clients?

Refer to the Introduction to Nomad Cluster Operation chapter for details.

Why is Test GitHub Authentication failing?

This means that the GitHub Enterprise server is not returning the intermediate SSL certificates. Check your

GitHub Enterprise instance with https://www.ssllabs.com/ssltest/analyze.html – it may report some missing

intermediate certs. You can use commands like openssl to get the full certificate chain for your server.

In some cases authentication fails when returning to the configuration page after it was successfully set up

once. This is because the secret is encrypted, so when returning checking it will fail.

How can I use HTTPS to access CircleCI?

While CircleCI creates a self-signed cert when starting up, that certificate only applies to the management

console and not the CircleCI product itself. If you want to use HTTPS, you’ll have to provide certificates to

use under the Privacy section of the settings in the management console.

Why doesn’t terraform destroy every resource?

CircleCI sets the services box to have termination protection in AWS and also writes to an s3 bucket. If you

want terraform to destroy every resource, you’ll have to either manually delete the instance, or turn off

termination protection in the circleci.tf file. You’ll also need to empty the s3 bucket that was created as

part of the terraform install.

Do the Nomad Clients store any state?

Frequently Asked Questions | OPERATIONS GUIDE | 83

https://www.ssllabs.com/ssltest/analyze.html

They can be torn down without worry as they don’t persist any data.

How do I verify TLS settings are failing?

Make sure that your keys are in unencrypted PEM format, and that the certificate includes the entire chain

of trust as follows:

-----BEGIN CERTIFICATE-----
your_domain_name.crt
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
intermediate 1
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
intermediate 2
-----END CERTIFICATE-----
...

How do I debug the Management Console (Replicated)?

The CircleCI management console is powered by Replicated. If you are experiencing any issues with the

Management Console, here are a few ways to debug it:

1. Check you have Replicated installed

First, make sure you have the CLI tool for Replicated installed by running the following:

replicated -version

2. Restart Replicated and the CircleCI app

Try restarting Replicated services. You can do this by running the following commands on the service box,

for Ubuntu 14.04:

sudo service replicated-ui restart
sudo service replicated restart
sudo service replicated-operator restart

For Ubuntu 16.04, run the following commands:

Frequently Asked Questions | OPERATIONS GUIDE | 84

sudo systemctl restart replicated-ui
sudo systemctl restart replicated
sudo systemctl restart replicated-operator

Then try restarting the CircleCi app: go to your services box admin (for example, <your-circleci-

hostname>.com:8800) and try restarting with "Stop Now" and "Start Now".

3. Try to log into Replicated

Try logging in to Replicated. You can do this by running the following command on the service box. You will

be asked to enter your password - the same one used to unlock the Management Console (i.e. <your-

circleci-hostname>.com:8800).

replicated login

If you could login, then run the following command and send the output to us at support@circleci.com so we

can help diagnose what is causing the problem you are experiencing.

sudo replicated apps

If you were seeing the following error: request returned Unauthorized for API route this could be because

you are not logged into Replicated, so please check if you are still getting the error after a successful login.

4. Check Replicated logs

You can find Replicated logs on the Services machine under /var/log/replicated.

5. Check what Docker containers are currently running

Replicated starts many Docker containers to run CircleCI server v2.x, so it can be useful to check what

containers are running.

To check what containers are currently running, run sudo docker ps and you should see something similar to

this output:

$ sudo docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

eb2970306859 172.31.72.162:9874/circleci-api-service:0.1.6910-8b54ef9 "circleci-

service-run" 26 hours

ago Up 26 hours 0.0.0.0:32872->80/tcp, 0.0.0.0:32871->443/tcp, 0.0.0.0:8082-

>3000/tcp,

0.0.0.0:32870->6010/tcp, 0.0.0.0:32869->8585/tcp api-service

01d26714f5f5 172.31.72.162:9874/circleci-workflows-conductor:0.1.38931-1a904bc8

Frequently Asked Questions | OPERATIONS GUIDE | 85

mailto:support@circleci.com

"/service/docker-ent…" 26 hours

ago Up 26 hours 0.0.0.0:9998->9998/tcp, 0.0.0.0:32868->80/tcp, 0.0.0.0:32867-

>443/tcp,

0.0.0.0:9999->3000/tcp, 0.0.0.0:32866->8585/tcp workflows-

conductor

0cc6e4248cfb 172.31.72.162:9874/circleci-permissions-service:0.1.1195-b617002

"/service/docker-ent…" 26 hours

ago Up 26 hours 0.0.0.0:3013->3000/tcp

permissions-service

9e6efc98b7d6 172.31.72.162:9874/circleci-cron-service:0.1.680-1fcd8d2 "circleci-

service-run" 26 hours

ago Up 26 hours 0.0.0.0:4261->4261/tcp

cron-service

8c40bd1cecf6 172.31.72.162:9874/circleci-federations-service:0.1.1134-72edcbc

"/service/docker-ent…" 26 hours

ago Up 26 hours 0.0.0.0:3145->3145/tcp, 0.0.0.0:8010->8010/tcp, 0.0.0.0:8090-

>8090/tcp

federations-service

71c71941684f 172.31.72.162:9874/circleci-contexts-service:0.1.6073-5275cd5 "./docker-

entrypoint…" 26 hours

ago Up 26 hours 0.0.0.0:2718->2718/tcp, 0.0.0.0:3011->3011/tcp, 0.0.0.0:8091-

>8091/tcp

contexts-service

71ffeb230a90 172.31.72.162:9874/circleci-domain-service:0.1.4040-eb63b67

"/service/docker-ent…" 26 hours

ago Up 26 hours 0.0.0.0:3014->3000/tcp

domain-service

eb22d3c10dd8 172.31.72.162:9874/circleci-audit-log-service:0.1.587-fa47042 "circleci-

service-run" 26 hours

ago Up 26 hours

audit-log-service

243d9082e35c 172.31.72.162:9874/circleci-frontend:0.1.203321-501fada "/docker-

entrypoint.…" 26 hours

ago Up 26 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 0.0.0.0:4434->4434/tcp

frontend

af34ca3346a7 172.31.72.162:9874/circleci-picard-dispatcher:0.1.10401-aa50e85 "circleci-

service-run" 26 hours

ago Up 26 hours

picard-dispatcher

fb0ee1b02d48 172.31.72.162:9874/circleci-vm-service:0.1.1370-ad05648 "vm-

service-service-…" 26 hours ago Up 26 hours 0.0.0.0:3001->3000/tcp

vm-service

3708dc80c63e 172.31.72.162:9874/circleci-vm-scaler:0.1.1370-ad05648 "/scaler-

entrypoint.…" 26 hours

ago Up 26 hours 0.0.0.0:32865->5432/tcp

vm-scaler

77bc9d0b4ac9 172.31.72.162:9874/circleci-vm-gc:0.1.1370-ad05648 "docker-

entrypoint.s…" 26 hours

ago Up 26 hours 0.0.0.0:32864->5432/tcp

vm-gc

4b02f202a05d 172.31.72.162:9874/circleci-output-processing:0.1.10386-741e1d1 "output-

processor-se…" 26 hours

Frequently Asked Questions | OPERATIONS GUIDE | 86

ago Up 26 hours 0.0.0.0:8585->8585/tcp, 0.0.0.0:32863->80/tcp, 0.0.0.0:32862->443/tcp

picard-output-processor

b8f982d32989 172.31.72.162:9874/circleci-frontend:0.1.203321-501fada "/docker-

entrypoint.…" 26 hours ago Up 26 hours 0.0.0.0:32861->80/tcp, 0.0.0.0:32860-

>443/tcp, 0.0.0.0:32859->4434/tcp

dispatcher

601c363a0c38 172.31.72.162:9874/circleci-frontend:0.1.203321-501fada "/docker-

entrypoint.…" 26 hours

ago Up 26 hours 0.0.0.0:32858->80/tcp, 0.0.0.0:32857->443/tcp, 0.0.0.0:32856-

>4434/tcp legacy-

notifier

f2190c5f3aa9 172.31.72.162:9874/mongo:3.6.6-jessie

"/entrypoint.sh" 26 hours

ago Up 26 hours 0.0.0.0:27017->27017/tcp

mongo

3cbbd959f42e 172.31.72.162:9874/telegraf:1.6.4

"/telegraf-entrypoin…" 26 hours

ago Up 26 hours 0.0.0.0:8125->8125/udp, 0.0.0.0:32771->8092/udp, 0.0.0.0:32855-

>8094/tcp telegraf

15b090e8cc02 172.31.72.162:9874/circleci-schedulerer:0.1.10388-741e1d1 "circleci-

service-run" 26 hours

ago Up 26 hours

picard-scheduler

fb967bd3bca0 172.31.72.162:9874/circleci-server-nomad:0.5.6-5.1 "/nomad-

entrypoint.sh" 26 hours

ago Up 26 hours 0.0.0.0:4646-4648->4646-4648/tcp

nomad

7e0743ee2bfc 172.31.72.162:9874/circleci-test-results:0.1.1136-b4d94f6 "circleci-

service-run" 26 hours

ago Up 26 hours 0.0.0.0:2719->2719/tcp, 0.0.0.0:3012->3012/tcp

test-results

0a95802c87dc 172.31.72.162:9874/circleci-slanger:0.4.117-42f7e6c "/docker-

entrypoint.…" 26 hours

ago Up 26 hours 0.0.0.0:4567->4567/tcp, 0.0.0.0:8081->8080/tcp

slanger

ca445870a057 172.31.72.162:9874/circleci-postgres-script-enhance:0.1.9-38edabf "docker-

entrypoint.s…" 26 hours

ago Up 26 hours 0.0.0.0:5432->5432/tcp

postgres

a563a228a93a 172.31.72.162:9874/circleci-server-ready-agent:0.1.105-0193c73 "/server-

ready-agent" 26 hours

ago Up 26 hours 0.0.0.0:8099->8000/tcp

ready-agent

d6f9aaae5cf2 172.31.72.162:9874/circleci-server-usage-stats:0.1.122-70f28aa "bash -c

/src/entryp…" 26 hours

ago Up 26 hours

usage-stats

086a53d9a1a5 registry.replicated.com/library/statsd-graphite:0.3.7

"/usr/bin/supervisor…" 26 hours

ago Up 26 hours 0.0.0.0:32851->2443/tcp, 0.0.0.0:32770->8125/udp

replicated-statsd

cc5e062844be 172.31.72.162:9874/circleci-shutdown-hook-poller:0.1.32-9c553b4

"/usr/local/bin/pyth…" 26 hours

ago Up 26 hours

Frequently Asked Questions | OPERATIONS GUIDE | 87

musing_volhard

9609f04c2203 172.31.72.162:9874/circleci-rabbitmq-delayed:3.6.6-management-12 "docker-

entrypoint.s…" 26 hours

ago Up 26 hours 0.0.0.0:5672->5672/tcp, 0.0.0.0:15672->15672/tcp, 0.0.0.0:32850-

>4369/tcp, 0.0.0.0:32849->5671/tcp, 0.0.0.0:32848->15671/tcp, 0.0.0.0:32847->25672/tcp rabbitmq

2bc0cfe43639 172.31.72.162:9874/tutum-logrotate:latest "crond -f"

26 hours

ago Up 26 hours

hardcore_cray

79aa857e23b4 172.31.72.162:9874/circleci-vault-cci:0.3.8-e2823f6 "./docker-

entrypoint…" 26 hours

ago Up 26 hours 0.0.0.0:8200-8201->8200-8201/tcp

vault-cci

b3e317c9d62f 172.31.72.162:9874/redis:4.0.10 "docker-

entrypoint.s…" 26 hours

ago Up 26 hours 0.0.0.0:6379->6379/tcp

redis

f2d3f77891f0 172.31.72.162:9874/circleci-nomad-metrics:0.1.90-1448fa7

"/usr/local/bin/dock…" 26 hours

ago Up 26 hours

nomad-metrics

1947a7038f24 172.31.72.162:9874/redis:4.0.10 "docker-

entrypoint.s…" 26 hours

ago Up 26 hours 0.0.0.0:32846->6379/tcp

slanger-redis

3899237a5782 172.31.72.162:9874/circleci-exim:0.2.54-697cd08 "/docker-

entrypoint.…" 26 hours

ago Up 26 hours 0.0.0.0:2525->25/tcp

exim

97ebdb831a7e registry.replicated.com/library/retraced:1.2.2

"/src/replicated-aud…" 26 hours

ago Up 26 hours 3000/tcp

retraced-processor

a0b806f3fad2 registry.replicated.com/library/retraced:1.2.2

"/src/replicated-aud…" 26 hours

ago Up 26 hours 172.17.0.1:32771->3000/tcp

retraced-api

19dec5045f6e registry.replicated.com/library/retraced:1.2.2 "/bin/sh

-c '/usr/lo…" 26 hours

ago Up 26 hours 3000/tcp

retraced-cron

7b83a3a193da registry.replicated.com/library/retraced-postgres:10.5-20181009 "docker-

entrypoint.s…" 26 hours

ago Up 26 hours 5432/tcp

retraced-postgres

029e8f454890 registry.replicated.com/library/retraced-nsq:v1.0.0-compat-20180619 "/bin/sh

-c nsqd" 26 hours

ago Up 26 hours 4150-4151/tcp, 4160-4161/tcp, 4170-4171/tcp

retraced-nsqd

500619f53e80 quay.io/replicated/replicated-operator:current

"/usr/bin/replicated…" 26 hours

ago Up 26 hours

replicated-operator

e1c752b4bd6c quay.io/replicated/replicated:current

Frequently Asked Questions | OPERATIONS GUIDE | 88

"entrypoint.sh -d" 26 hours

ago Up 26 hours 0.0.0.0:9874-9879->9874-9879/tcp

replicated

1668846c1c7a quay.io/replicated/replicated-ui:current

"/usr/bin/replicated…" 26 hours

ago Up 26 hours 0.0.0.0:8800->8800/tcp

replicated-ui

f958cf3e8762 registry.replicated.com/library/premkit:1.2.0

"/usr/bin/premkit da…" 3 weeks

ago Up 26 hours 80/tcp, 443/tcp, 2080/tcp, 0.0.0.0:9880->2443/tcp

replicated-premkit

Providing support@circleci.com with the output of sudo docker ps from the Services machine will help us

diagnose the cause of your problem.

Frequently Asked Questions | OPERATIONS GUIDE | 89

mailto:support@circleci.com

Customization and Configuration

The following sections summarize the key files and variables that impact CircleCI server behavior, and

configuration options for your server installation.

Notable Files & Folders

Need Path More info

General Config /etc/circle-installation-
customizations

See table below for values

JVM Heap Sizes /etc/circleconfig/XXXX/customiz

ations Supports: frontend,

test_results

Adjust heap size for individual

containers with JVM_HEAP_SIZE

Custom CA Certs /usr/local/share/ca-
certificates/

Container Customizations /etc/circleconfig/XXX/customiza
tions

Used in lots of places by CircleCI

containers

/etc/hosts /etc/hosts Respected by several containers

including frontend, copied to

container’s /etc/hosts

/etc/environment /etc/environment Respected by all containers

Properties of /etc/circle-installation-customizations

 Every property should be in the format export ENV_VAR="value"

Property Impact More info

CIRCLE_URL Override the scheme and host that

CircleCI uses

JVM_HEAP_SIZE Set JVM heap size for all

containers reading this property

Use container specific settings

when possible (see files above)

Other Properties and Env Vars

Property Impact More info

HTTP_PROXY, NO_PROXY Proxy for replicated and other

services outside CircleCI

containers to use

Notable Files & Folders | OPERATIONS GUIDE | 90

Service Configuration Overrides

This section describes the configuration interface for overriding services in CircleCI server.


Customizing your configuration can have potentially damaging consequences, so we

recommend contacting support@circleci.com for guidance before making any changes.

Configuration is done by exporting environment variables in files located on the Services machine.

Consider the file “customizations” created at the following path /etc/circleconfig/workflows-conductor:

export FOO="bar"

The value of FOO will take precedence over the default values set in the default container mapping in the

CircleCI server configuration.

Available Overrides

/etc/circleconfig/api-service/customizations
/etc/circleconfig/audit-log-service/customizations
/etc/circleconfig/contexts-service-db-migrator/customizations
/etc/circleconfig/contexts-service/customizations
/etc/circleconfig/cron-service-db-migrator/customizations
/etc/circleconfig/cron-service/customizations
/etc/circleconfig/domain-service-migrator/customizations
/etc/circleconfig/domain-service/customizations
/etc/circleconfig/federations-service-db-migrator/customizations
/etc/circleconfig/federations-service-migrator/customizations
/etc/circleconfig/frontend/customizations
/etc/circleconfig/output-processor/customizations
/etc/circleconfig/permissions-service-migrator/customizations
/etc/circleconfig/permissions-service/customizations
/etc/circleconfig/picard-dispatcher/customizations
/etc/circleconfig/schedulerer/customizations
/etc/circleconfig/test-results/customizations
/etc/circleconfig/vm-gc/customizations
/etc/circleconfig/vm-scaler/customizations
/etc/circleconfig/vm-service-db-migrator/customizations
/etc/circleconfig/vm-service/customizations
/etc/circleconfig/workflows-conductor/customizations

Service Configuration Overrides | OPERATIONS GUIDE | 91

mailto:support@circleci.com

Resource Classes

Introduced in CircleCI server v2.19

You can customize resource classes for your installation to provide developers with CPU/RAM options for

the Jobs they configure.


The resources for machine executors can’t be configured using the method described on

this page. To change CPU and memory size for VMs, change AWS Instance Type in the VM

Provider section of the Management Console. See the VM Service guide for more details.


Once resource classes are set using the steps below, make these options available to

developers so they can ensure correct usage.

Following are the steps required to customize resource classes for the Docker executors:

1. SSH into the Services machine.

2. Run the following:

sudo mkdir /etc/circleconfig/picard-dispatcher

3. Run the following:

sudo vim /etc/circleconfig/picard-dispatcher/resource-definitions.edn


This file replaces the full resource class definition for your installation so it is

important to include all resource classes your users need at this point, not just those

you wish to customize.

4. Add your required customizations to the file, then save and exit vim with :wq - see below for options and

formatting.

5. Run:

echo 'export CIRCLE_DISPATCHER_RESOURCE_DEF=/circleconfig/picard-dispatcher/resource-

definitions.edn' | sudo tee /etc/circleconfig/picard-dispatcher/customizations

6. Restart the CircleCI server application. The application can be stopped and started again from the

Management Console Dashboard (for example, <circleci-hostname>.com:8800).

Below is an example resource class configuration:

Example config:

Service Configuration Overrides | OPERATIONS GUIDE | 92

https://circleci.com/docs/2.0/optimizations/#resource-class

{:default-resource-class :medium

 :resource-classes

 {:docker

 ;; Modify below

 {:small {:id "d1.small" :availability :general :ui {:cpu 2.0 :ram 4096 :class :small} :outer {:cpu

2.0 :ram 4096}}

 :medium {:id "d1.medium" :availability :general :ui {:cpu 4.0 :ram 8192 :class :medium} :outer

{:cpu 4.0 :ram 8192}}

 :massive {:id "d1.massive" :availability :general :ui {:cpu 7.0 :ram 28000 :class :massive}

:outer {:cpu 7.0 :ram 28000}}}

 ;; Modify above

 ;; NOTE: Do not delete or modify the following block: Such attempts will break machine builds.

 :machine

 {:medium {:id "l1.medium" :availability :general :ui {:cpu 2.0 :ram 4096 :class :medium} :outer

{:cpu 1 :ram 512}}

 :large {:id "l1.large" :availability :general :ui {:cpu 4.0 :ram 16384 :class :medium} :outer

{:cpu 1 :ram 512}}

 :windows.medium {:id "windows.medium" :availability :general :ui {:cpu 2.0 :ram 8192 :class

:windows.medium} :outer {:cpu 1 :ram 512}}}}}

Let’s take a look at one of the options in more detail

:medium {:id "d1.medium" :availability :general :ui {:cpu 4.0 :ram 8192 :class :medium} :outer {:cpu

4.0 :ram 8192}

• :medium - this is the name that your developers will use to refer to the resource class in their config.yml

and the keyword medium is the external facing name of the resource class.

• :id "d1.medium" - this is the internal name for the resource class. You can customize this ID for Docker

resource classes.

• :availability :general - required field

• :ui {:cpu 4.0 :ram 8192 :class :medium} - Information used by the CircleCI UI. This this should be

kept in parity with :outer - see below.

• :outer {:cpu 4.0 :ram 8192} - This defines the CPU and RAM for the resource class.



Jobs can only run if the Nomad client has enough CPU/RAM in order to allocate the

resources required. If not, the job will be queued. See our Nomad metrics guide for

information on monitoring the capacity of your Nomad cluster, and Nomad Client System

Requirements for more about capacity, and how Nomad allocates jobs.

Login Screen

Introduced in CircleCI Server v2.17.3

You can add a banner to your login screen as follows:

Service Configuration Overrides | OPERATIONS GUIDE | 93

server-ports.pdf#nomad-clients
server-ports.pdf#nomad-clients

1. Access the file: /etc/circleconfig/frontend/customizations on the Services machine

2. Add the following line, substituting the text you wish to display in the banner:

export CIRCLE__OUTER__LOGIN_BANNER_MESSAGE="<insert-your-message-here>

3. Restart CircleCI from the Management Console (your-circleci-hostname.com:8800)

Figure 24. Login Screen Banner Example

Service Configuration Overrides | OPERATIONS GUIDE | 94

CircleCI server container architecture

This document outlines the containerized services that run on the Services machine within a CircleCI server

v2.x installation. This is provided both to give an overview of service operation, and to help with

troubleshooting in the event of service outages. Supplementary notes and a key are provided below the

following table.

Notes

• Database migrator services are listed here with a low failure severity as they only run at startup,

however:

 If migrator services are down at startup connected services will fail.

• With a Premium support contract, some services can be externalized (marked with * here) and managed

to suit your requirements. Externalization provides higher data security and allows for redundancy to be

built into your system.

key

Icon Description

 Failure has a minor affect on production - no loss of

data or functioning.

 Failure might cause issues with some jobs, but no

loss of data.

 Failure can cause loss of data, corruption of

jobs/workflows, major loss of functionality.

CircleCI server container architecture | OPERATIONS GUIDE | 95

Containers, Roles, Failure Modes and Startup Dependencies

Container / Image Role What happens if it

fails?

Failure

severity

Startup dependencies

api-service Provides a GraphQL

API that provides

much of the data to

render the web

frontend.

Many parts of the UI

(e.g. Contexts) will fail

completely.

 postgres, frontend,
contexts-service-

migrator, contexts-

service, vault-cci

audit-log-service Persists audit log

events to blob

storage for long term

storage.

Some events may not

be recorded.

 postgres, frontend

contexts-service Stores and provides

encrypted contexts.

All builds using

Contexts will fail.

 postgres, frontend,
contexts-service-

migrator, vault-cci

contexts-service-
migrator

Runs postgresql

migrations for the

contexts-service.

Only runs at startup.  postgres, frontend

cron-service Triggers scheduled

workflows.

Scheduled workflows

will not run.

 postgres, frontend,
cron-service-
migrator

cron-service-
migrator

Runs postgresql

migrations for the

cron-service.

Only runs at startup.  postgres, frontend

domain-service Stores and provides

information about our

domain model.

Workflows will fail to

start and some REST

API calls may fail

causing 500 errors in

the CircleCI UI. If

LDAP authentication

is in use, all logins will

fail.

 postgres, frontend,
domain-service-
migrator

domain-service-
migrator

Runs postgresql

migrations for the

domain-service.

Only runs at startup.  postgres, frontend

exim Mail Transfer Agent

(MTA) used to send

all outbound SMTP.

No email notifications

will be sent.

 None

federation-service Stores user identities

(LDAP).

If LDAP

authentication is in

use, all logins will fail

and some REST API

calls might fail.

 only if

LDAP in use

postgres, frontend,
federations-service-
migrator

Containers, Roles, Failure Modes and Startup Dependencies | OPERATIONS GUIDE | 96

Container / Image Role What happens if it

fails?

Failure

severity

Startup dependencies

federation-service-
migrator

Runs postgresql

migrations for the

federations-service.

Only runs at startup.  postgres, frontend

fileserved File storage service

used as a

replacement for S3

when CircleCI server

v2.x is run outside of

AWS. Not used if

server is configured

to use S3. Stores step

output logs, artifacts,

test results, caches

and workspaces.

If not using S3, builds

will produce no

outputand some

REST API calls might

fail.

 if not using

S3

None

frontend CircleCI web app and

www-api proxy.

The UI and REST API

will be unavailable

and no jobs will be

triggered by

GitHub/Enterprise.

Running builds will be

OK but no updates

will be seen.

 postgres

mongo * Mongo data store. Potential total data

loss. All running

builds will fail and the

UI will not work.

 mongodb-upgrader

nomad-metrics Queries the nomad

server for stats and

sends them to statsd.

Nomad metrics will

be lost, but

everything else

should run as normal.

 None

output-processor /
output-processing

Receives job output &

status updates and

writes them to

MongoDB. Also

provides an API to

running jobs to access

caches, workspaces,

store caches,

workspaces, artifacts,

& test results.

All running builds will

either fail or be left in

an unfixable,

inconsistent state.

There will also be

data loss in terms of

step output, test

results and artifacts.

 None

Containers, Roles, Failure Modes and Startup Dependencies | OPERATIONS GUIDE | 97

Container / Image Role What happens if it

fails?

Failure

severity

Startup dependencies

permissions-service Provides the CircleCI

permissions interface.

Workflows will fail to

start and some REST

API calls may fail,

causing 500 errors in

the UI.

 postgres, frontend,
permissions-service-
migrator

permissions-service-
migrator

Runs postgresql

migrations for the
permissions-service

Only runs at startup.  postgres, frontend

picard-dispatcher Splits a job into tasks

and sends them to

schedulerer to be

run.

No jobs will be sent

to Nomad, the run

queue will increase in

size but there should

be no meaningful loss

of data.

 None

postgres / postgres-

script-enhance *

Basic postgresql with

enhancements for

creating required

databases when

containers are

launched.

Potential total data

loss. All running

builds will fail and the

UI will not work.

 None

rabbitmq / rabbitmq-

delayed *

Runs the RabbitMQ

server. Most of our

services use

RabbitMQ for

queueing.

Potential total data

loss. All running

builds will fail and the

UI will not work.

 None

outputRunningRedis /

redis *

The Redis key/value

store.

Lose output from

currently-running job

steps. API calls out to

GitHub may also fail.

 None

schedulerer Sends tasks to

server-nomad to run. \

No jobs will be sent

to Nomad, the run

queue will increase in

size but there should

be no meaningful loss

of data.

 None

mongodb-upgrader /
server-mongo-
upgrader

Used to run any

mongo

conversion/upgrade

scripts during mongo

version upgrade.

Not required to run

all the time. \

 None

nomad_server /

server-nomad *

Nomad primary

service.

No 2.0 build jobs will

run.

 None

Containers, Roles, Failure Modes and Startup Dependencies | OPERATIONS GUIDE | 98

Container / Image Role What happens if it

fails?

Failure

severity

Startup dependencies

ready-agent / server-
ready-agent

Called by Replicated

to check whether

other containers are

ready.

Only required on

startup. If unavailable

on startup the whole

system will fail.

 None

server-usage-stats Sends the user count

to the internal

CircleCI “phone

home” endpoint.

CircleCI will not

receive usage stats

for your install but no

affect on operation.

 None

shutdown-hook-poller Checks the frontend

container for 1.0

Builder shutdown

requests. If a request

is found, the 1.0

Builder is shut down.

1.0 Builder lifecycles

will not be properly

managed, but jobs

will continue to run.

 None

slanger Provides real-time

events to the CircleCI

app.

Live UI updates will

stop but hard

refreshes will still

work.

 None

telegraf This is the statsd

forwarding agent that

our local services

write to and can be

configured to forward

to an external metrics

service.

Metics will stop

working but jobs will

continue to run.

 None

tutum/logrotate Used to manage log

rotations for all

containers on the

services machine.

If this stays down for

a long period the

Services machine disk

will eventually run

out of space and

other services will

fail.

 None

test-results Parses test result files

and stores data.

There will be no test

failure or timing data

for jobs, but this will

be back-filled once

the service is

restarted.

 None

Containers, Roles, Failure Modes and Startup Dependencies | OPERATIONS GUIDE | 99

Container / Image Role What happens if it

fails?

Failure

severity

Startup dependencies

contexts-vault /

vault-cci *

Instance of

Hashicorp’s Vault –

an encryption service

that provides key-

management, secure

storage, and other

encryption related

services. Used to

handle the encryption

and key store for the

contexts-service.

contexts-service will

stop working, and all

jobs that use

contexts-service will

fail.

 None

vm-gc Periodically check for

stale machine and

remote Docker

instances and request

that vm-service

remove them.

Old vm-service

instances might not

be destroyed until

this service is

restarted.

 vm-service-db-
migrator

vm-scaler Periodically requests

that vm-service

provision more

instances for running

machine and remote

Docker jobs.

VM instances for

machine and Remote

Docker might not be

provisioned causing

you to run out of

capacity to run jobs

with these executors.

 vm-service-db-
migrator

vm-service Inventory of available

vm-service instances,

and provisioning of

new instances.

Jobs that use machine

or remote Docker will

fail.

 vm-service-db-
migrator

vm-service-db-
migrator

Used to run database

migrations for vm-

service.

Only runs at startup.  None

workflows-conductor Coordinates and

provides information

about workflows.

No new workflows

will start, currently

running workflows

might end up in an

inconsistent state,

and some REST and

GraphQL API

requests will fail.

 postgres, frontend,
workflows-conductor-
migrator

workflows-conductor-
migrator

Runs postgreSQL

migrations for the

workflows-conductor.

Only runs on startup.  postgres, frontend

Containers, Roles, Failure Modes and Startup Dependencies | OPERATIONS GUIDE | 100

CircleCI Server AWS S3 Storage Lifecycle Guide

This guide is intended to help system administrators of CircleCI server installations on AWS better

understand how S3 storage is used. This can help to cut compute resource costs and avoid issues for service

users when removing resources.

In CircleCI server, S3 Lifecycle policies are not configured automatically. The figures provided in this guide

are examples to help you create a lifecycle policy for your installation. For more information on the steps

required to add policy rules, see the AWS Lifecycle Policy Guide.

Example Lifecycle Policy Configuration for S3 Buckets

Prefix Tag Suggested Number

of Days

Description of files Side effects of

deletion

artifacts (null) 30 General artifacts

(deliverables from

store_artifacts

and

store_test_results)

Artifacts will

disappear from the

list of artifacts in job

results. URLs will

return 404.

artifacts "circleci.object_t
ype" ===
"project.cache"

15 Dependency caches The first build after

deletion will be slow

due to cache miss.

artifacts "circleci.object_t
ype" ===
"workflow.workspac
e"

15 Workspaces If a job depending

on workspaces is

rerun (e.g. SSH

rerun),

attach_workspace

will restore no files,

and subsequent

steps will fail.

artifacts/picard-
task-configs

(null) 1 Task config None

action-logs (null) 365 Outputs from each

step

Outputs will not be

shown any longer.

Loading indicator

will remain even

after opening a pull-

down for each step.

cache (null) 15 Legacy cache This folder is not

actively used. If a

job depends on

these files, the first

build after deletion

will be slow due to

cache miss.

Example Lifecycle Policy Configuration for S3 Buckets | OPERATIONS GUIDE | 101

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html

Additional Locations Not Listed Above

audit-logs

This is where audit logs are saved. Deleting this folder and files under this fodler has no impact on future

operation of CircleCI, but deleted logs will be definitely lost and cannot be recovered.

code-signing-keys

This is where signing keys for macOS/iOS apps are stored. This folder is no longer used actively.

test-results

This is where statistic data collected with store_test_results resides. The data is used for future test

splitting with circleci tests split --split-by=timings. Deleting test results will cause CIRCLE BUG

errors in future jobs using parallelism.

Example Lifecycle Policy Configuration for S3 Buckets | OPERATIONS GUIDE | 102

	OPERATIONS GUIDE: A guide for administrators of CircleCI Server installations on AWS and private infrastructure.
	Overview
	Execution Environments
	Architecture

	Introduction to Nomad Cluster Operation
	Basic Terminology and Architecture
	Basic Operations

	Monitoring Your Installation
	Metrics Overview
	Standard Metrics Configuration
	System Monitoring Metrics
	Supported Platforms
	Custom Metrics
	Additional Tips

	Configuring Nomad Client Metrics
	Nomad Metrics Server
	Nomad Metrics Client
	StatsD Metrics

	Setting Up HTTP Proxies
	Overview
	Service Machine Proxy Configuration
	Data Persistence

	Authentication
	OAuth with GitHub/GitHub Enterprise
	LDAP

	VM Service
	Overview
	1. Supply AMIs
	2. Define Instance Types
	3. On Demand and Preallocated Instances
	Job and Instance Management
	Accessing Remote Docker and machine instances

	Running GPU Executors
	Prerequisites
	Overview
	Adding GPU Steps to an AMI

	Setting Up Certificates
	Using a Custom Root CA
	Setting up ELB Certificates
	Setting up TLS/HTTPS on CircleCI Server

	Managing User Accounts in Server Installations
	Suspending Accounts
	Reactivating a Suspended User Account
	Controlling Account Access

	Build Artifacts
	Safe and Unsafe Content Types
	Allow Unsafe Content types

	Enabling Usage Statistics
	Detailed Usage Statistics
	Accessing Usage Data

	Configuring the JVM Heap Size
	Setting up
	Verify customization is applied

	SSH Rerun Architecture in Server
	Rerunning a Job with SSH

	Maintenance
	System Checks
	Security and Access Control
	System Configuration
	Metrics
	Usage Statistics
	Health Checks
	Operational Tasks
	Troubleshooting
	Queues
	Daylight-saving time changes
	Data cleardown
	Log rotation
	Replicated Failover and Recovery procedures
	User Management

	Backup and Recovery
	Disaster Recovery
	Backing up CircleCI Data
	Backing up the Database
	Backing up Object Storage
	Snapshotting on AWS EBS
	Restoring From Backup
	Cleaning up Build Records

	Security
	Overview
	Encryption
	Sandboxing
	Integrations
	Audit Logs
	Checklist To Using CircleCI Securely as a Customer

	Troubleshooting Server Installations
	Generating a Support Bundle
	Debug Queuing Builds
	Why do my Jobs stay in queued status until they fail and never successfully run?
	Why is the cache failing to unpack?
	How do I get around the API service being impacted by a high thread count?

	Frequently Asked Questions
	Customization and Configuration
	Notable Files & Folders
	Service Configuration Overrides

	CircleCI server container architecture
	Containers, Roles, Failure Modes and Startup Dependencies

	CircleCI Server AWS S3 Storage Lifecycle Guide
	Example Lifecycle Policy Configuration for S3 Buckets

