
OPERATIONS GUIDE
A guide for administrators of CircleCI Server
v3.4.1 on AWS or GCP

docs@circleci.com

Version 3.4.1, 04/07/2022: FINAL

CircleCI Server v3.x Operations Overview . 1

Execution Environment. 1

Nomad Clients . 1

GitHub. 2

CircleCI Server v3.x Metrics and Monitoring . 3

Metrics Collection . 3

Scope. 3

Prometheus . 3

KOTS Admin - Metrics Graphs . 3

Telegraf . 3

Use Telegraf to forward metrics to Datadog . 4

Introduction to Nomad Cluster Operation . 5

Basic Terminology and Architecture. 5

Basic operations . 6

Checking the jobs status . 6

Checking the cluster status . 6

Checking logs . 7

Shutting down a Nomad client . 7

Scaling down the client cluster . 8

CircleCI Server v3.x Configuring a Proxy . 9

Installation and configuration . 9

Installing behind a proxy . 9

Configuring your proxy . 9

Known limitations . 10

CircleCI Server v3.x User Accounts . 12

Suspending Accounts . 12

New Accounts . 12

Active Accounts . 12

Inactive Accounts . 12

Reactivating Accounts . 12

New Accounts . 12

Previously Active Accounts. 13

Limiting Registration by GitHub Organization . 13

CircleCI Server v3.x Managing Orbs . 14

Managing Orbs. 14

List available orbs . 14

Import a public orb . 14

Fetch a public orb’s updates . 15

Using orbs behind a proxy . 15

CircleCI Server v3.x VM Service . 16

VM service settings. 16

VM provider . 16

AWS EC2 . 16

Authentication . 17

Default AWS AMI list . 17

Google Cloud Platform. 18

CircleCI Server v3.x Configuring External Services . 20

PostgreSQL. 20

Best Practices for your PostgreSQL . 21

Backing Up PostgreSQL. 21

MongoDB . 21

Vault. 23

CircleCI Server v3.x Internal Database Volume Expansion. 24

Overview. 24

Resizing persistent volume claims . 24

Step 0 - Confirm current volume size . 24

Step 1 - Confirm volume expansion is allowed . 25

Step 2 - Delete the database’s stateful set. 26

Step 3 - Update the size of the database’s PVC . 26

Step 4 - Update KOTS Admin Console with the new PVC size . 26

Step 5 - Validate new volume size . 27

Troubleshooting. 28

CircleCI Server v3.x Load Balancers . 30

Make the frontend load balancer private . 30

CircleCI Server v3.x Authentication . 31

Using Docker Authenticated Pulls . 32

Docker executor . 32

Machine executor (with Docker orb) . 33

Machine executor (with Docker CLI) . 33

AWS ECR . 34

CircleCI Server v3.x build artifacts. 37

Safe and unsafe content types . 37

Allow unsafe types . 38

CircleCI Server v3.x Usage Data . 39

Current Data Collected. 39

Security . 40

Overview. 40

Encryption. 40

Sandboxing . 40

Integrations. 40

Audit Logs . 41

Audit Log Events . 41

Audit Log Fields. 42

Checklist To Using CircleCI Securely as a Customer . 42

CircleCI Server v3.x Application Lifecycle. 44

Semantic Versioning . 44

Release Schedule . 44

CircleCI Server v3.x Troubleshooting and Support . 45

Start KOTS Admin Console . 45

Generate Support Bundle . 45

Managing Pods. 45

Verify Pod Readiness and Status . 45

Verify Pod Settings and Status . 46

Get Pod Logs . 46

Restart Pods. 46

Debug Queuing Builds . 46

CircleCI Server v3.x Backup and Restore . 47

Overview. 47

The setup . 47

Prerequisites . 47

AWS prerequisites . 47

GCP prerequisites . 47

S3-compatible storage prerequisites . 47

Server 3.x backups on AWS. 48

Step 1 - Create an AWS S3 bucket . 48

Step 2 - Setup permissions for Velero. 48

Step 3 - Install and start Velero . 50

Server 3.x backups on GCP . 51

Step 1 - Create a GCP bucket. 51

Step 2 - Setup permissions for Velero. 51

Option 1: JSON key file. 53

Option 2: Workload Identities . 53

Step 3 - Install and start Velero . 53

If using a JSON key file . 54

If using Workload Identities . 54

Server 3.x backups with S3-compatible storage . 55

Step 1 - Configure mc client. 55

Step 2 - Create a bucket . 55

Set 3 - Create a user and policy . 55

Step 4 - Install and start Velero . 56

Creating backups . 57

Option 1 - Create a backup with KOTS CLI . 57

Option 2 - Create a backup with KOTS Admin Console . 58

Restoring backups . 58

Option 1 - Restore a backup from a snapshot . 58

Option 2 - Restore a backup using the KOTS CLI . 58

Option 3 - Restore a backup using the KOTS Admin Console . 59

Optional - Scheduling backups with KOTS . 59

Troubleshooting Backups and Restoration . 60

Snapshots are not available in KOTS Admin Console. 60

Errors occur during backup or restore process . 60

CircleCI Server v3.x Operations Overview

The following guide contains information useful for CircleCI server Operators, or those responsible for

ensuring CircleCI server 3.x is running properly through maintenance and monitoring.

It is assumed that you have already read the Server 3.x Overview.

CircleCI server schedules CI jobs using the Nomad scheduler. The Nomad control plane runs inside of

Kubernetes, while the Nomad clients are provisioned outside the cluster. The Nomad clients need access to

the Nomad control plane, output processor, and VM service.

CircleCI server can run Docker jobs on the Nomad clients, but it can also run jobs in a dedicated VM. These

VM jobs are controlled by the Nomad clients, therefore the Nomad clients must be able to access the VM

machines on port 22 for SSH and port 2376 for remote Docker jobs.

Job artifacts and outputs are sent directly from jobs in Nomad to object storage (S3, GCS, or other

supported options).

Audit logs and other items from the application are also stored in object storage, so both the Kubernetes

cluster and the Nomad clients need access to object storage.

Execution Environment

CircleCI server 3.x uses Nomad as the primary job scheduler. Refer to our Introduction to Nomad Cluster

Operation to learn more about the job scheduler and how to perform basic client and cluster operations.

By default, CircleCI Nomad clients automatically provision compute resources according to the executors

configured for each job in a project’s .circleci/config.yml file.

Nomad Clients

Nomad Clients run without storing state, allowing you to increase or decrease the number of containers as

needed.

To ensure enough Nomad clients are running to handle all builds, track the queued builds and then increase

the number of Nomad client machines as needed to balance the load. For more on tracking metrics see the

Metrics and Monitoring section.

If a job’s resource class requires more resources than the Nomad client’s instance type has available, it will

remain in a pending state. Choosing a smaller instance type for Nomad clients is a way to reduce cost, but

limits the Docker resource classes CircleCI can use. Review the available resource classes to decide what is

best for you. The default instance type will run up to xlarge resource classes.

See the Nomad Documentation for options on optimizing the resource usage of Nomad clients.

The maximum machine size for a Nomad client is 128GB RAM/64 CPUs. Contact your

CircleCI account representative to request use of larger machines for Nomad clients.

For more information on Nomad port requirements, see the Hardening Your Cluster section.

Execution Environment | OPERATIONS GUIDE | 1

https://circleci.com/docs/2.0/server-3-overview
https://www.nomadproject.io/
https://circleci.com/docs/2.0/server-3-operator-nomad/
https://circleci.com/docs/2.0/server-3-operator-nomad/
https://circleci.com/docs/2.0/executor-types/#available-docker-resource-classes
https://www.nomadproject.io/docs/install/production/requirements#resources-ram-cpu-etc
https://circleci.com/docs/2.0/server-3-install-hardening-your-cluster/?section=server-administration#nomad-clients

GitHub

CircleCI uses GitHub or GitHub Enterprise as an identity provider. GitHub Enterprise can, in turn, use SAML

or SCIM to manage users from an external identity provider.

CircleCI does not support changing the URL or backend GitHub instance after it has been

set up.

The following table describes the ports used on machines running GitHub to communicate with the services

and Nomad client instances.

Source Ports Use

Services 22 Git access

Services 80 or 443 API access

Nomad Client 22 Git access

Nomad Client 80 or 443 API access

Execution Environment | OPERATIONS GUIDE | 2

https://docs.github.com/en/github-ae@latest/admin/authentication/about-identity-and-access-management-for-your-enterprise
https://docs.github.com/en/github-ae@latest/admin/authentication/about-identity-and-access-management-for-your-enterprise

CircleCI Server v3.x Metrics and Monitoring

Metrics such as CPU or memory usage and internal metrics are useful in:

• Quickly detecting incidents and abnormal behavior.

• Dynamically scaling compute resources.

• Retroactively understanding infrastructure-wide issues.

Metrics Collection

Scope

Your CircleCI server installation collects a number of metrics and logs by default, which can be useful in

monitoring the health of your system and debugging issues with your installation.

 Data is retained for a maximum of 15 days.

Prometheus Server is not limited to scraping metrics from your CircleCI server install. By

default, it scrapes metrics from your entire cluster. You may disable Prometheus from

within the KOTS Admin Console config if needed.

Prometheus

Prometheus is a leading monitoring and alerting system for Kubernetes. Server 3.x ships with a basic

implementation of monitoring common performance metrics.

This feature is broken in KOTS versions 1.65.0 - 1.67.0. If you rely on this feature, we

recommend that you do not upgrade your KOTS version until this has been resolved.

KOTS Admin - Metrics Graphs

By default, an instance of Prometheus is deployed with your CircleCI server install. Once deployed, you may

provide the address for your Prometheus instance to the KOTS Admin Console. KOTS uses this address to

generate graph data for the CPU and memory usage of containers in your cluster.

The default Prometheus address is http://prometheus-server

From the KOTS dashboard, select "configure graphs". Then enter http://prometheus-server and KOTS

generates resource usage graphs.

Telegraf

Most services running on server report StatsD metrics to the Telegraf pod running in server. The

configuration is fully customizable, so you can forward your metrics from Telegraf to any output supported

by Telegraf through output plugins. By default, it will provide a metrics endpoint for Prometheus to scrape.

Metrics Collection | OPERATIONS GUIDE | 3

https://prometheus.io/
https://www.influxdata.com/time-series-platform/telegraf/
https://docs.influxdata.com/telegraf/v1.17/plugins/#output-plugins

Use Telegraf to forward metrics to Datadog

The following example shows how to configure Telegraf to output metrics to Datadog:

1. Open the management console dashboard and select Config from the menu bar.

2. Locate the Custom Telegraf config section under Observability and monitoring. There is an editable

text window where you can configure plugins for forwarding Telegraf metrics for your server

installation.

3. To forward to Datadog, add the following code, substituting my-secret-key with your Datadog API key:

[[outputs.datadog]]
 ## Replace "my-secret-key" with Datadog API key
 apikey = "my-secret-key"

For more options, see the Influxdata docs.

Metrics Collection | OPERATIONS GUIDE | 4

https://docs.influxdata.com/telegraf/v1.17/plugins/#output-plugins

Introduction to Nomad Cluster Operation

CircleCI uses Nomad as the primary job scheduler. This section provides a basic introduction to Nomad for

understanding how to operate the Nomad Cluster in your CircleCI installation.

Basic Terminology and Architecture

Figure 1. Nomad Cluster Management

Basic Terminology and Architecture | OPERATIONS GUIDE | 5

https://www.hashicorp.com/blog/nomad-announcement/

• Nomad server: Nomad servers are the brains of the cluster, they receive and allocate jobs to Nomad

clients. In CircleCI server, a Nomad server runs as a service in your Kubernetes cluster.

• Nomad client: Nomad clients execute the jobs they are allocated by Nomad servers. Usually a Nomad

client runs on a dedicated machine (often a VM) to take full advantage of machine power. You can have

multiple Nomad clients to form a cluster and the Nomad server allocates jobs to the cluster with its

scheduling algorithm.

• Nomad jobs: A Nomad job is a specification, provided by a user, that declares a workload for Nomad. A

Nomad job corresponds to an execution of a CircleCI job. If the job uses parallelism, for example 10

parallelism, then Nomad runs 10 jobs.

• Build agent: Build agent is a Go program written by CircleCI that executes steps in a job and reports the

results. Build agent is executed as the main process inside a Nomad job.

Basic operations

The following section is a basic guide to operating a Nomad cluster in your installation.

The nomad CLI is installed in the Nomad pod. It is preconfigured to talk to the Nomad cluster, so it is possible

to use kubectl along with the nomad command to run the commands in this section.

Checking the jobs status

The get a list of statuses for all jobs in your cluster, run the following command:

kubectl exec -it nomad-server-pod-ID -- nomad status

The Status is the most important field in the output, with the following status type definitions:

• running: Nomad has started executing the job. This typically means your job in CircleCI is started.

• pending: There are not enough resources available to execute the job inside the cluster.

• dead: Nomad has finished executing the job. The status becomes dead regardless of whether the

corresponding CircleCI job/build succeeds or fails.

Checking the cluster status

To get a list of your Nomad clients, run the following command:

kubectl exec -it nomad-server-pod-ID -- nomad node-status

nomad node-status reports both Nomad clients that are currently serving (status active)

and Nomad clients that were taken out of the cluster (status down). Therefore, you need to

count the number of active Nomad clients to know the current capacity of your cluster.

To get more information about a specific client, run the following command from that client:

Basic operations | OPERATIONS GUIDE | 6

kubectl exec -it nomad-server-pod-ID -- nomad node-status -self

This gives information such as how many jobs are running on the client and the resource utilization of the

client.

Checking logs

As noted in the Nomad jobs section above, a Nomad job corresponds to an execution of a CircleCI job.

Therefore, Nomad job logs can sometimes help to understand the status of a CircleCI job if there is a

problem. To get logs for a specific job, run the following command:

kubectl exec -it nomad-server-pod-ID -- nomad logs -job -stderr <nomad-job-id>

 Be sure to specify the -stderr flag, as this is where most Build Agent logs appear.

While the nomad logs -job command is useful, the command is not always accurate because the -job flag

uses a random allocation of the specified job. The term allocation is a smaller unit in Nomad Job, which is

beyond the scope of this document. To learn more, please see the official document.

Complete the following steps to get logs from the allocation of the specified job:

1. Get the job ID with nomad status command.

2. Get the allocation ID of the job with nomad status <job-id> command.

3. Get the logs from the allocation with nomad logs -stderr <allocation-id>

Shutting down a Nomad client

When you want to shutdown a Nomad client, you must first set the client to drain mode. In drain mode, the

client will finish any jobs that have already been allocated but will not be allocated any new jobs.

1. To drain a client, log in to the client and set the client to drain mode with node-drain command as

follows:

nomad node-drain -self -enable

2. Then, make sure the client is in drain mode using the node-status command:

nomad node-status -self

Alternatively, you can drain a remote node with the following command, substituting the node ID:

Basic operations | OPERATIONS GUIDE | 7

https://www.nomadproject.io/docs/internals/scheduling.html

nomad node-drain -enable -yes <node-id>

Scaling down the client cluster

To set up a mechanism for clients to shutdown, first enter drain mode, then wait for all jobs to be finished

before terminating the client. You can also configure an ASG Lifecycle Hook that triggers a script for scaling

down instances.

The script should use the commands in the section above to do the following:

1. Put the instance in drain mode.

2. Monitor running jobs on the instance and wait for them to finish.

3. Terminate the instance.

Basic operations | OPERATIONS GUIDE | 8

https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html

CircleCI Server v3.x Configuring a Proxy

Depending on your security requirements, you might want to install CircleCI server behind a proxy. Installing

behind a proxy gives you the power to monitor and control access between your installation and the

broader Internet.

Installation and configuration

There are two stages to installing CircleCI server behind a proxy. First, at the point of installation, the proxy

addresses need to be specified, along with any addresses that should not be behind the proxy.

Installing behind a proxy

The installation process is described in detail in the CircleCI Server v3.x Installation guide. Both proxy and

non-proxy addresses should be supplied using the arguments described here. The installation command

should be in the format:

kubectl kots install circleci-server --http-proxy <my-http-proxy-uri> --https-proxy <my-https-proxy>

--no-proxy <my-no-proxy-list>

Configuring your proxy

Once you have installed server and accessed the management console, there are some fields that need to be

completed in the configuration section, as shown in the screenshot below. These fields will not be

automatically populated, so the same proxy and no-proxy addresses you supplied during installation will

need to be supplied here. If your proxy requires authentication in the form of a username and password,

check the HTTP Proxy authenticated option to add the credentials.

Installation and configuration | OPERATIONS GUIDE | 9

https://circleci.com/docs/2.0/server-3-install/
https://kots.io/kotsadm/installing/online-install/#proxies

Figure 2. CircleCI Server v3.x Configuring a Proxy

Known limitations

• Some additional configuration is required to import orbs when installed behind a proxy. See Orbs on

Server docs for more information.

• The JVM only accepts proxies that run over HTTP, not HTTPS, and therefore proxy URIs must be of the

form http://user:password@host:port rather than https://user:password@host:port.

• If your GitHub instance is running outside of the proxied environment (either GitHub.com or GitHub

Enterprise), you must ensure that SSH traffic from our application (inside the Kubernetes cluster) and

from our Nomad node can reach your instance without additional configuration. Our SSH agents do not

respect proxy settings because it uses a different network protocol. If a proxy is the only way that any

traffic can reach outside the proxied environment, this means it will block SSH traffic and your

application will fail.

• The load balancer endpoints must be added to the no-proxy list for the following services: output

processor and vm-service. This is because the no-proxy list is shared between the application and build-

agent. The application and build-agent are assumed to be behind the same firewall and therefore cannot

have a proxy between them.

• The KOTS Admin Console cannot be upgraded if proxy setting were configured. The proxy settings will

be deleted and cause the KOTS Admin Console to break.

• If you install server behind a proxy, you may need to provide a custom image for VM service. Visit the

CircleCI Linux Image Builder repo for further information.

• If object storage is outside the proxy, no job features that use object storage will work. This includes:

Known limitations | OPERATIONS GUIDE | 10

https://circleci.com/docs/2.0/server-3-operator-orbs/#using-orbs-behind-a-proxy
https://circleci.com/docs/2.0/server-3-operator-orbs/#using-orbs-behind-a-proxy
https://github.com/CircleCI-Public/circleci-server-linux-image-builder

◦ Artifacts

◦ Test results

◦ Cache save and restore

◦ Workspaces

Users can get around this restriction by setting environment variables on their jobs. For example:

jobname:
 docker:
 - image: ubuntu:latest
 environment:
 HTTP_PROXY: http://proxy.example.com:3128
 HTTPS_PROXY: http://proxy.example.com:3128
 NO_PROXY: whatever.internal,10.0.1.2

It is crucial that these environment variables are set in this specific location

because it is the only location that propagates them to the correct service.

Known limitations | OPERATIONS GUIDE | 11

CircleCI Server v3.x User Accounts

This section provides information to help operators manage user accounts. For an overview of user

accounts, see the Admin settings overview from the CircleCI app by clicking on your profile in the top right

corner and selecting Admin.

Suspending Accounts

This section covers how to suspend new, active, or inactive accounts.

New Accounts

Any user associated with your GitHub organization can create a user account for your CircleCI Server

installation. To control who has access, you can choose to automatically suspend all new users, requiring an

administrator to activate them before they can log in. To access this feature:

1. Navigate to your CircleCI Admin Settings.

2. Select System Settings from the Admin Settings menu.

3. Set Suspend New Users to True.

Active Accounts

When an account is no longer required, you can suspend the account. It will no longer be active and will not

count against your license quota. To suspend an account:

1. Navigate to your CircleCI Admin Settings.

2. Select Users from the Admin Settings menu.

3. Scroll to locate the account in either the Active or Inactive window.

4. Click Suspend next to the account name and the account will appear in the Suspended window.

Inactive Accounts

Inactive accounts are those that have been approved by the administrator of the server installation but have

not logged into the system successfully. These accounts do not count against your available server seats.

Reactivating Accounts

This section covers how to reactivate new or previously active accounts.

New Accounts

To activate a new account that was automatically suspended and allow the associated user access to your

installation of CircleCI Server:

1. Navigate to your CircleCI Admin Settings.

2. Select Users from the Admin Settings menu.

3. View the Suspended New Users window.

Suspending Accounts | OPERATIONS GUIDE | 12

4. Click on Activate next to the User you wish to grant access and the account will appear in the Active

Window.

Previously Active Accounts

To reactivate an account that has been suspended:

1. Navigate to your CircleCI Admin Settings.

2. Select Users from the Admin Settings menu.

3. View the Suspended window.

4. Click on Activate next to the User you wish to grant access and the account will appear in the Active

window.

Limiting Registration by GitHub Organization

When using GitHub.com, you can limit who can register with your CircleCI install to people with some

connection to your approved organizations list. To access this feature:

1. Navigate to your CircleCI Admin Settings page.

2. Select System Settings from the Admin Setting menu.

3. Scroll down to Required Org Membership List.

4. Enter the organization(s) you wish to approve. If entering more than one organization, use a comma-

delimited string.

Limiting Registration by GitHub Organization | OPERATIONS GUIDE | 13

CircleCI Server v3.x Managing Orbs

This section describes how to manage orbs for an installation of server v3.x. Server installations include their

own local orb registry. All orbs referenced in configs refer to the orbs in the server orb registry. You are

responsible for maintaining orbs. This includes copying orbs from the public registry, updating orbs that may

have been previously copied, and registering your company’s private orbs, if they exist.

For information on orbs and related use cases, see the Orb docs.

If you are looking for information on creating an orb, see the Introduction to Authoring Orbs.

Managing Orbs

Orbs are accessed via the CircleCI CLI. Orbs require your CircleCI user to be an admin. They also require a

personal API token.

Please ensure that you are using a personal API token generated after your user account is made an admin.

Providing a local repository location using the --host option allows you to access your local server orbs,

rather than public cloud orbs. For example, if your server installation is located at

http://circleci.somehostname.com, you can run orb commands local to that orb repository by passing

--host http://cirlceci.somehostname.com.

List available orbs

To list available public orbs, visit the orb directory, or run the following command:

circleci orb list

To list available private orbs (registered in your local server orb repository), run the following command:

circleci orb list --host <your-server-install-domain> --token <your-api-token>

Import a public orb

To import a public orb to your local server orb repository, run the following command:

circleci admin import-orb <namespace>[<orb-name>[@<orb-version>]] --host <your-server-installation-

domain> --token <your-api-token>

You can choose to only specify a namespace, in which case the most recent versions of all

orbs in the namespace will be imported.

Managing Orbs | OPERATIONS GUIDE | 14

https://circleci.com/docs/2.0/orb-intro/#quick-start
https://circleci.com/docs/2.0/orb-author-intro/
https://circleci.com/docs/2.0/local-cli/
https://circleci.com/docs/2.0/managing-api-tokens/

Fetch a public orb’s updates

To update a public orb in your local server orb repository with a new version, run the following command:

circleci admin import-orb ns[orb[@version]] --host <your server installation domain> --token <your

api token>

Using orbs behind a proxy

When importing orbs, the CLI must be able to talk to the server installation and to circleci.com. If you want

to do this when using a server installation behind a proxy, the CLI needs to be configured to use the proxy

to make those requests to circleci.com, rather than proxying requests to the server install. For example:

export NO_PROXY=server.example.com

export HTTPS_PROXY=http://proxy.example.com:3128

export HTTP_PROXY=http://proxy.example.com:3128

circleci admin import-orb ns[orb[@version]] --host <your server installation domain> --token <your

api token>

Fetch a public orb’s updates | OPERATIONS GUIDE | 15

CircleCI Server v3.x VM Service

CircleCI server’s VM service controls how machine executor (Linux and Windows images) and Remote

Docker jobs are run.

This section describes the available configuration options for VM service. These config options are all

accessible from the KOTS Admin Console by choosing the Config tab from your dashboard.

We recommend that you leave these options at their defaults until you have successfully

configured and verified the core and build services of your server installation. Steps to set

up VM service are provided in the server 3.x installation guide for AWS and GCP.

VM service settings

You need to provide the hostname/IP for your VM service load balancer:

1. Once your server installation is up and running, run the following command:

kubectl get svc/vm-service

2. Enter the address listed under External IP in the VM Service Load Balancer Hostname field.

There is also an option to change the port used for VM service. The default is 3000 and this should only be

changed if you are guided to do so by a CircleCI support engineer.

VM provider

The following configuration options are for the VM provider: either AWS or GCP.

AWS EC2

You will need to complete the following fields to configure your VM Service to work with AWS EC2.

At this point you can uncheck the Assign Public IPs check box if you need VMs to use private IP addresses.

• AWS Region (required): This is the region in which the application is hosted.

• AWS Linux AMI ID (optional): If you wish to provide a custom AMI for Linux machine executors, you can

supply an AMI ID here. To create a Linux image, use the CircleCI Server Linux Image Builder. If you leave

this field blank, a default AMI will be used.

• AWS Windows AMI ID (optional): If you require Windows executors, you can supply an AMI ID for

them here. To create a Windows image, use the CircleCI Server Windows Image Builder. Leave this field

blank if you do not require Windows executors.

• Subnets (required): Choose subnets (public or private) where the VMs should be deployed. Note that all

subnets must be in the same availability zone.

• Security Group ID (required): This is the security group that will be attached to the VMs.

The recommended security group configuration can be found in the Hardening Your Cluster section.

VM service settings | OPERATIONS GUIDE | 16

https://circleci.com/docs/2.0/executor-types/#using-machin
https://circleci.com/docs/2.0/building-docker-images
https://circleci.com/docs/2.0/building-docker-images
https://circleci.com/docs/2.0/server-3-install-build-services/#eks
https://circleci.com/docs/2.0/server-3-install-build-services/#gke
https://github.com/CircleCI-Public/circleci-server-linux-image-builder
https://github.com/CircleCI-Public/circleci-server-windows-image-builder
https://circleci.com/docs/2.0/server-3-install-hardening-your-cluster

• Number of <VM-type> VMs to keep prescaled: By default, this field is set to 0, which creates and

provisions instances of a resource type on demand. You have the option of preallocating up to five

instances per resource type. Preallocating instances lowers the start time, allowing for faster machine

and remote_docker builds.

Preallocated instances are always running and could potentially increase costs.

Decreasing this number may also take up to 24 hours for changes to take effect. You

have the option of terminating those instances manually, if required.

If Docker Layer Caching (DLC) is used, VM Service instances need to be spun up on

demand. For this to happen, either check any preallocated instances are in use, or set

both remote Docker and machine preallocated instance fields to 0.

When using preallocated instances, be aware that a cron job is scheduled to cycle

through these instances once per day to ensure they do not end up in an unworkable

state.

Authentication

One of the following options is required. Either select "IAM Keys" and provide:

• Access Key ID (required): Access Key ID for EC2 access.

The Access Key and Secret Key used by VM Service differs from the policy used by

object storage in the previous section.

• Secret Key (required): Secret Key for EC2 access.

Or select "IAM role" and provide:

• Role ARN (required): Role ARN for Service Accounts (Amazon Resource Name) for EC2 access.

Default AWS AMI list

The default AMIs for server v3.x are based on Ubuntu 20.04.

VM provider | OPERATIONS GUIDE | 17

https://circleci.com/docs/2.0/docker-layer-caching/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

"us-east-1" "ami-04f249339fa8afc90"
"ca-central-1" "ami-002f61fb4f6cd4f04"
"ap-south-1" "ami-0309e6438340ff3f5"
"ap-southeast-2" "ami-03ac956e1d298b76a"
"ap-southeast-1" "ami-0272b002478c96552"
"eu-central-1" "ami-07266a91e4ef7e3e8"
"eu-west-1" "ami-0bc8a965f9ae82e44"
"eu-west-2" "ami-0bcbed1cffe3866c2"
"sa-east-1" "ami-05291e231356c0387"
"us-east-2" "ami-08735066168c5c8e9"
"us-west-1" "ami-035e0e862838fcb21"
"us-west-2" "ami-0b4970c467d8baaef"
"ap-northeast-1" "ami-0b9233227f60abc2c"
"ap-northeast-2" "ami-08e7a9df6ab2f6b9d"
"eu-west-3" "ami-07f0d51c7621f0c39"
"us-gov-east-1" "ami-0f68718afd37587ae"
"us-gov-west-1" "ami-8e2106ef"

Google Cloud Platform

You need the following fields to configure your VM service to work with Google Cloud Platform (GCP).

We recommend you create a unique service account used exclusively by VM Service. The

Compute Instance Admin (Beta) role is broad enough to allow VM Service to operate. If

you wish to make permissions more granular, you can use the Compute Instance Admin

(beta) role documentation as reference.

At this point you can uncheck the Assign Public IPs check box if you need VMs to use private IP addresses.

• GCP project ID (required): Name of the GCP project the cluster resides.

• GCP Zone for your VMs (required): GCP zone the virtual machines instances should be created in, for

example us-east1-b.

• GCP Windows Image (optional): If you require Windows executors, you can supply an AMI ID for them

here. To create a Windows image, use the CircleCI Server Windows Image Builder. Leave this field blank

if you do not require Windows executors.

• GCP VPC Network (required): Name of the VPC Network. If you are deploying CircleCI server in a

shared VPC, use the full network endpoint for the host network rather than the name, for example:

https://www.googleapis.com/compute/v1/projects/<host-project>/global/networks/<network-name>

• GCP VPC Subnet (optional): Name of the VPC Subnet. If using auto-subnetting, leave this field blank. If

you are deploying CircleCI server in a shared VPC, use the full network endpoint for the shared

VM provider | OPERATIONS GUIDE | 18

https://cloud.google.com/compute/docs/access/iam#compute.instanceAdmin
https://cloud.google.com/compute/docs/access/iam#compute.instanceAdmin
https://github.com/CircleCI-Public/circleci-server-windows-image-builder

subnetwork rather than the name, for example:

https://www.googleapis.com/compute/v1/projects/<service-project>/regions/<your-

region>/subnetworks/<subnetwork-name>

• GCP IAM Access Type (required): One of the following is required. Either select GCP Service Account

JSON file and provide:

◦ GCP Service Account JSON file (required): Copy and paste the contents of your service account

JSON file if using the static GCP IAM service account credential.

Or select IAM Workload Identity and provide:

◦ GCP IAM Workload Identity (required): Copy and paste the VM service account email address

(service-account-name@project-id.iam.gserviceaccount.com) which you have created here in point

2 & 3.

• Number of <VM-type> VMs to keep prescaled: By default, this field is set to 0, which will create and

provision instances of a resource type on demand. You have the option of preallocating up to 5

instances per resource type. Preallocating instances lowers the start time allowing for faster machine

and remote_docker builds.

Preallocated instances are always running and could potentially increase costs.

Decreasing this number may also take up to 24 hours for changes to take effect. You

have the option of terminating those instances manually, if required.

If Docker Layer Caching (DLC) is used, VM Service instances need to be spun up on

demand. For this to happen, either ensure any preallocated instances are in use, or set

both remote Docker and machine preallocated instance fields to 0.

When using preallocated instances be aware that a cron job is scheduled to cycle

through these instances once per day to ensure they do not end up in an unworkable

state.

VM provider | OPERATIONS GUIDE | 19

https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts
https://circleci.com/docs/2.0/server-3-install-build-services/#gcp-3
https://circleci.com/docs/2.0/docker-layer-caching/

CircleCI Server v3.x Configuring External Services

This document describes how to configure the following external services for use with a CircleCI server 3.x

installation. The settings described in this guide can be found in the KOTS Admin Console. Access the KOTS

Admin Console by running the following command, substituting your namespace: kubectl kots admin-
console -n <YOUR_CIRCLECI_NAMESPACE>

PostgreSQL

 If using your own PostgreSQL instance, it needs to be version 12.1 or higher.

Figure 3. External PostgreSQL

If you choose to use an external PostgreSQL instance, complete the following fields:

• PostgreSQL Service Domain (required) - The domain or IP address of your PostgreSQL instance.

• PostgreSQL Service Port (required) - The port of your PostgreSQL instance.

• PostgreSQL Service Username (required) - A user with the appropriate privileges to access your

PostgreSQL instance.

• PostgreSQL Service Password (required) - The password of the user account used to access your

PostgreSQL instance.

PostgreSQL | OPERATIONS GUIDE | 20

Best Practices for your PostgreSQL

Consider running at least two PostgreSQL replicas to allow recovery from primary failure and for backups.

The table below shows the recommended specifications for PostgreSQL machines:

of Daily Active

Users

of PostgreSQL

Replicas

CPU RAM Disk NIC Speed

<50 2 8 Cores 16 GB 100 GB 1 Gbps

50 - 250 2 8 Cores 16 GB 200 GB 1 Gbps

250 - 1000 3 8 Cores 32 GB 500 GB 10 Gbps

1000 - 5000 3 8 Cores 32 GB 1 TB 10 Gbps

5000+ 3 8 Cores 32 GB 1 TB 10 Gbps

Backing Up PostgreSQL

PostgreSQL provides official documentation for backing up and restoring your PostgreSQL 12 install, which

can be found here.

We strongly recommend the following:

• Taking daily backups.

• Keeping at least 30 days of backups.

• Using encrypted storage for backups as databases might contain sensitive information.

• Performing a backup before each upgrade of CircleCI server.

MongoDB

 If using your own MongoDB instance, it needs to be version 3.6 or higher.

MongoDB | OPERATIONS GUIDE | 21

https://www.postgresql.org/docs/12/backup.html

Figure 4. External MongoDB

If you choose to use an external MongoDB instance, complete the following fields:

• MongoDB connection host(s) or IP(s) (required) - The hostname or IP of your MongoDB instance.

Specifying a port using a colon and multiple hosts for sharded instances are both supported.

• Use SSL for connection to MongoDB (required) - Whether to use SSL when connecting to your external

MongoDB instance.

• Allow insecure TLS connections (required) - If you use a self-signed certificate or one signed by a

custom CA, you will need to enable this setting. However, this is an insecure setting and you should use

a TLS certificate signed by a valid CA, if you can.

• MongoDB user (required) - The username for the account to use. This account should have the

MongoDB | OPERATIONS GUIDE | 22

dbAdmin role.

• MongoDB password (required) - The password for the account to use.

• MongoDB authentication source database (required) - The database that holds the account information,

usually admin.

• MongoDB authentication mechanism (required) - The authentication mechanism to use, usually

SCRAM-SHA-1.

• Additional connection options (optional) - Any other connection options you would like to use. This

needs to be formatted as a query string (key=value pairs, separated by &. Special characters must be URL

encoded). See the MongoDB docs for available options.

Vault

Figure 5. External Vault

If you choose to use an external Vault instance, complete the following fields:

• URL - The URL to your Vault service.

• Transit Path - Your Vault secrets transit path.

• Token - The access token for vault.

Vault | OPERATIONS GUIDE | 23

https://docs.mongodb.com/v3.6/reference/connection-string/

CircleCI Server v3.x Internal Database Volume
Expansion

Overview

Persistent volume expansion of MongoDB and Postgres is available for server v3.2.0 and higher.

If you have chosen to deploy either of the CircleCI databases (MongoDB or Postgres) within the cluster,

rather than externally provisioning these databases, there may come a point at which the storage space

initially made available to these databases is no longer sufficient. Internal databases in your Kubernetes

cluster make use of persistent volumes for persistent storage. The size of these volumes is determined by

persistence volume claims (PVCs). These PVCs request storage space based on what has been made

available to the nodes in your cluster.

This document runs through the steps required to increase PVCs to expand the space available to your

internally deployed databases. This operation should not require any downtime, unless you need to restart

your database pods.

Expanding persistent volumes does not affect the size of the storage attached to your

nodes. Expanding node storage remains within the limitations of your cloud provider.

Please refer to the docs for your chosen cloud provider for details on how to expand the

storage attached to your cluster’s nodes.

Resizing persistent volume claims

Below are the steps detailing how to resize the persistent volume claims for Postgres and MongoDB. You

will confirm the size of the claims and the disk space made available to your databases before and after this

operation.

 As a precaution, it is always a good idea to create a backup of your cluster first.

Step 0 - Confirm current volume size

By default, the persistent volume claims used by our internal databases have a capacity of 8Gi. However,

this initial value can be set at the time of first deployment from the KOTS Admin Console. You can confirm

the size of your persistent volume claim capacity using the command: kubectl get pvc <pvc-name>.

For Postgres:

circleci-user ~ $ kubectl get pvc data-postgresql-0

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

data-postgresql-0 Bound pvc-c2a2d97b-2b7d-47d3-ac77-d07c76c995a3 8Gi RWO

gp2 1d

For MongoDB:

Overview | OPERATIONS GUIDE | 24

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://circleci.com/docs/2.0/server-3-operator-backup-and-restore/?section=server-administration

circleci-user ~ $ kubectl get pvc datadir-mongodb-0

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

datadir-mongodb-0 Bound pvc-58a2274c-31c0-487a-b329-0062426b5535 8Gi RWO

gp2 1d

You can also confirm this capacity is made available to a database by checking the size of its data directory.

For Postgres, the directory is /bitnami/postgresql. You can confirm its size using the command below.

circleci-user ~ $ kubectl exec postgresql-0 -- df -h /bitnami/postgresql
Filesystem Size Used Avail Use% Mounted on
/dev/nvme4n1 7.8G 404M 7.4G 3% /bitnami/postgresql

For MongoDB, the directory is /bitnami/mongodb.

circleci-user ~ $ kubectl exec mongodb-0 -- df -h /bitnami/mongodb
Filesystem Size Used Avail Use% Mounted on
/dev/nvme1n1 7.8G 441M 7.4G 3% /bitnami/mongodb

From the examples above, the capacities are still 8Gi. The following steps show how to increase this to

10Gi.

Step 1 - Confirm volume expansion is allowed

First, confirm that volume expansion is allowed in your cluster.

circleci-user ~ $ kubectl get sc

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION

AGE

gp2 (default) kubernetes.io/aws-ebs Delete WaitForFirstConsumer false

1d

As you can see, your default storage class does not allow volume expansion. However, you can change this

with the kubectl patch command:

circleci-user ~ $ kubectl patch sc gp2 -p '{"allowVolumeExpansion": true}'

storageclass.storage.k8s.io/gp2 patched

circleci-user ~ $ kubectl get sc

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION

AGE

gp2 (default) kubernetes.io/aws-ebs Delete WaitForFirstConsumer true

1d

Resizing persistent volume claims | OPERATIONS GUIDE | 25

Now you may proceed to expanding your volumes.

Step 2 - Delete the database’s stateful set

In this step, you will delete the stateful set, which controls your database pod. The command below deletes

the referenced database’s stateful set without deleting the pod. You do not want to delete the pod itself, as

this would cause downtime. In the following steps, you will redeploy your stateful set. You might chose to

delete one or both stateful sets, depending on which database volumes you wish to expand. The

--cascade=false flag is most important here.

For Postgres:

kubectl delete sts postgresql --cascade=false

For MongoDB:

kubectl delete sts mongodb --cascade=false

Step 3 - Update the size of the database’s PVC

Now that the stateful set has been removed, you can increase the size of our persistent volume claim to

10Gi.

For Postgres:

kubectl patch pvc data-postgresql-0 -p '{"spec": {"resources": {"requests": {"storage": "10Gi"}}}}'

For MongoDB:

kubectl patch pvc datadir-mongodb-0 -p '{"spec": {"resources": {"requests": {"storage": "10Gi"}}}}'

Step 4 - Update KOTS Admin Console with the new PVC size

Now you need to access the KOTS Admin Console to persist your changes. In the config section, you will

update the values for your PVC size to 10Gi as shown below.

Resizing persistent volume claims | OPERATIONS GUIDE | 26

Figure 6. Postgres

Figure 7. MongoDB

Now save and deploy your changes. This recreates the stateful set(s) that you destroyed earlier, but with the

new PVC sizes, which will persist through new releases.

Step 5 - Validate new volume size

Once deployed, you can validate the size of the data directories assigned to our databases.

For Postgres the directory is /bitnami/postgresql.

circleci-user ~ $ kubectl exec postgresql-0 -- df -h /bitnami/postgresql
Filesystem Size Used Avail Use% Mounted on
/dev/nvme4n1 9.8G 404M 9.4G 5% /bitnami/postgresql

For MongoDB the directory is /bitnami/mongodb.

Resizing persistent volume claims | OPERATIONS GUIDE | 27

circleci-user ~ $ kubectl exec mongodb-0 -- df -h /bitnami/mongodb
Filesystem Size Used Avail Use% Mounted on
/dev/nvme1n1 9.8G 441M 9.3G 5% /bitnami/mongodb

As you can see, the size of your directories has been increased.

When completing these steps, if you find, as expected, that the new pods do show the resized volumes, it is

still worth checking with the kubectl describe commands shown below. In some instances the resize will

fail, but the only way to know is by viewing an event in the output from kubectl describe.

For Postgres:

kubectl describe pvc data-postgresql-0

For MongoDB:

kubectl describe pvc datadir-mongodb-0

Success looks like this example:

Events:

Type Reason Age From Message

Normal FileSystemResizeSuccessful 19m kubelet MountVolume.NodeExpandVolume succeeded for volume

"pvc-b3382dd7-3ecc-45b0-aeff-45edc31f48aa"

Failure might look like this example:

Warning VolumeResizeFailed 58m volume_expand error expanding volume "circleci-server/datadir-

mongodb-0" of plugin "kubernetes.io/aws-ebs": AWS modifyVolume failed for vol-08d0861715c313887 with

VolumeModificationRateExceeded: You've reached the maximum modification rate per volume limit. Wait

at least 6 hours between modifications per EBS volume.

status code: 400, request id: 3bd43d1e-0420-4807-9c33-df26a4ca3f23

Normal FileSystemResizeSuccessful 55m (x2 over 81m) kubelet MountVolume.NodeExpandVolume

succeeded for volume "pvc-29456ce2-c7ff-492b-add4-fcf11872589f"

Troubleshooting

After following these steps, if you find that the disk size allocated to your data directories has not increased,

then you may need to restart your database pods. This will cause downtime of 1-5 minutes while the

databases restart. You can use the commands below to restart your databases.

For Postgres:

Troubleshooting | OPERATIONS GUIDE | 28

kubectl rollout restart sts postgresql

For MongoDB:

kubectl rollout restart sts mongodb

Troubleshooting | OPERATIONS GUIDE | 29

CircleCI Server v3.x Load Balancers

CircleCI server uses load balancers to manage network traffic entering and leaving the Kubernetes services

cluster. The three load balancers managing traffic to the Nomad cluster are internal to the VPC and they

manage the distribution of jobs to the various compute resources.

The frontend load balancer manages traffic coming from developers and your VCS, including through the

API, the CLI, and CircleCI app. The frontend load balancer is public by default, but can be made private.

Make the frontend load balancer private

Webhooks: If you choose to make the frontend load balancer private, the following

conditions must be met, depending on your VCS, for webhooks to work:

• GitHub Enterprise – your CircleCI server installation must be in the same internal

network as GHE.

• GitHub.com – set up a proxy for incoming webhooks and set it as override for the

webhook host URL. This setting can be found under Admin Settings > System

Settings > Override webhook host URL from the CircleCI app.

The Private load balancers option only works with installations on CircleCI server on GKE

or EKS.

1. From the management console, select Config from the menu bar and locate the Private load balancers

option under General Settings.

2. Check the box next to Private load balancers.

If you are using Let’s Encrypt TLS certificates, this box will not be visible as Let’s

Encrypt does not work with private installations. Uncheck the box for Let’s Encrypt to

make the Private load balancer option appear.

If you are changing this setting after the initial deployment of CircleCI server, you may need to delete the

old public load balancer so that Kubernetes requests a new load balancer with the new configuration.

Make the frontend load balancer private | OPERATIONS GUIDE | 30

CircleCI Server v3.x Authentication

CircleCI server currently supports OAuth through GitHub or GitHub Enterprise.

The default method for user account authentication in CircleCI server is through GitHub.com/GitHub

Enterprise OAuth.

After your installation is up and running, provide users with a link to access the CircleCI application - for

example, <your-circleci-hostname>.com – and they will be prompted to set up an account by running

through the GitHub/GitHub Enterprise OAuth flow before being redirected to the CircleCI login screen.

CircleCI Server v3.x Authentication | OPERATIONS GUIDE | 31

Using Docker Authenticated Pulls

This document describes how to authenticate with your Docker registry provider to pull images.

Authenticated pulls allow access to private Docker images. It may also grant higher rate limits, depending on

your registry provider.

CircleCI has partnered with Docker to ensure that our users can continue to access Docker Hub without

rate limits. As of November 1st 2020, with few exceptions, you should not be impacted by any rate limits

when pulling images from Docker Hub through CircleCI. However, these rate limits may be implemented for

CircleCI users in the future. This is why we are encouraging you and your team to add Docker Hub

authentication to your CircleCI configuration and consider upgrading your Docker Hub plan, as appropriate,

to prevent any impact from rate limits in the future.

Docker executor

For the Docker executor, specify a username and password in the auth field of your config.yml file. To

protect the password, place it in a context, or use a per-project Environment Variable.

Server 2.x customers may instead set up a Docker Hub pull through a registry mirror. Pulls

through Docker Hub registry mirrors are not yet available on server 3.x.

Contexts are the more flexible option. CircleCI supports multiple contexts, which is an

effective way to modularize secrets, ensuring jobs can only access what they need.

This example grants the "build" job access to Docker credentials context, docker-hub-creds, without bloating

the existing build-env-vars context:

workflows:
 my-workflow:
 jobs:
 - build:
 context:
 - build-env-vars
 - docker-hub-creds

jobs:
 build:
 docker:
 - image: acme-private/private-image:321
 auth:
 username: mydockerhub-user # can specify string literal values
 password: $DOCKERHUB_PASSWORD # or project environment variable reference

If you have two-factor authentication set up on Docker Hub, you can simply use your personal access token

for the password key instead. For example:

Docker executor | OPERATIONS GUIDE | 32

https://circleci.com/docs/2.0/executor-types/#using-docker
https://circleci.com/docs/2.0/configuration-reference
https://circleci.com/docs/2.0/contexts/
docker-hub-pull-through-mirror.pdf
https://docs.docker.com/docker-hub/2fa/
https://docs.docker.com/docker-hub/access-tokens/

- image: acme-private/private-image:321
 auth:
 username: mydockerhub-user
 password: $DOCKERHUB_ACCESS_TOKEN

You can also use images from a private repository like gcr.io or quay.io. Ensure you supply the full

registry/image URL for the image key, and use the appropriate username/password for the auth key. For

example:

- image: quay.io/project/image:tag
 auth:
 username: $QUAY_USERNAME
 password: $QUAY_PASSWORD

Machine executor (with Docker orb)

Alternatively, you can utilize the machine executor to achieve the same result using the Docker orb:

version: 2.1

orbs:

 docker: circleci/docker@1.4.0

workflows:

 my-workflow:

 jobs:

 - machine-job:

 context:

 - build-env-vars

 - docker-hub-creds

jobs:

 machine-job:

 machine: true

 steps:

 - docker/check:

 docker-username: DOCKERHUB_LOGIN # DOCKER_LOGIN is the default value, if it exists, it

automatically would be used.

 docker-password: DOCKERHUB_PASSWORD # DOCKER_PASSWORD is the default value

 - docker/pull:

 images: 'circleci/node:latest'

Machine executor (with Docker CLI)

Or with the CLI:

Machine executor (with Docker orb) | OPERATIONS GUIDE | 33

https://cloud.google.com/container-registry
https://quay.io

version: 2
jobs:
 build:
 machine: true
 working_directory: ~/my_app
 steps:
 # Docker is preinstalled, along with docker-compose
 - checkout

 # start proprietary DB using private Docker image
 - run: |
 docker login -u $DOCKER_USER -p $DOCKER_PASS
 docker run -d --name db company/proprietary-db:1.2.3

AWS ECR

CircleCI now supports pulling private images from Amazon’s ECR service.

You can pull your private images from ECR repositories in any regions. However, for the

best experience, we strongly recommend you make a copy of your image in us-east-1

region, and specify that us-east-1 image for the Docker executor. Our job execution

infrastructure is in the us-east-1 region, so using us-east-1 images accelerates the

process of spinning up your environment.

You can start using private images from ECR in one of two ways:

1. Set your AWS credentials using standard CircleCI private environment variables.

2. Specify your AWS credentials in .circleci/config.yml using aws_auth:

version: 2
jobs:
 build:
 docker:
 - image: account-id.dkr.ecr.us-east-1.amazonaws.com/org/repo:0.1
 aws_auth:
 aws_access_key_id: AKIAQWERVA # can specify string literal values
 aws_secret_access_key: $ECR_AWS_SECRET_ACCESS_KEY # or project UI envar reference

Both options are virtually the same. However, the second option enables you to specify the variable name

you want for the credentials. This can be useful where you have different AWS credentials for different

infrastructures. For example, your SaaS app runs the speedier tests and deploys to staging infrastructure on

every commit, while for git tag pushes, we run the complete test suite before deploying to production:

AWS ECR | OPERATIONS GUIDE | 34

version: 2
jobs:
 build:
 docker:
 - image: account-id.dkr.ecr.us-east-1.amazonaws.com/org/repo:0.1
 aws_auth:
 aws_access_key_id: $AWS_ACCESS_KEY_ID_STAGING
 aws_secret_access_key: $AWS_SECRET_ACCESS_KEY_STAGING
 steps:
 - run:
 name: "Every Day Tests"
 command: "testing...."
 - run:
 name: "Deploy to Staging Infrastructure"
 command: "something something darkside.... cli"
 deploy:
 docker:
 - image: account-id.dkr.ecr.us-east-1.amazonaws.com/org/repo:0.1
 aws_auth:
 aws_access_key_id: $AWS_ACCESS_KEY_ID_PRODUCTION
 aws_secret_access_key: $AWS_SECRET_ACCESS_KEY_PRODUCTION
 steps:
 - run:
 name: "Full Test Suite"
 command: "testing...."
 - run:
 name: "Deploy to Production Infrastructure"
 command: "something something darkside.... cli"

workflows:
 version: 2
 main:
 jobs:
 - build:
 filters:
 tags:
 only: /^\d{4}\.\d+$/
 - deploy:
 requires:
 - build
 filters:

AWS ECR | OPERATIONS GUIDE | 35

 branches:
 ignore: /.*/
 tags:
 only: /^\d{4}\.\d+$/

AWS ECR | OPERATIONS GUIDE | 36

CircleCI Server v3.x build artifacts

Build artifacts persist data after a job is completed. They can be used for longer-term storage of your build

process outputs. For example, when a Java build/test process finishes, the output of the process is saved as

a .jar file. CircleCI can store this file as an artifact, keeping it available long after the process has finished.

Safe and unsafe content types

By default, only predefined artifact types are allowed to be rendered. This protects users from uploading,

and potentially executing, malicious content. The 'allowed-list' is as follows:

Category Safe Type

Text Plain

Application json

Image png

Image jpg

Image gif

Image bmp

Video webm

Video ogg

Video mp4

Audio webm

Audio aac

Audio mp4

Audio mpeg

Audio ogg

Audio wav

Safe and unsafe content types | OPERATIONS GUIDE | 37

Also, by default, the following types will be rendered as plain text:

Category Unsafe Type

Text html

Text css

Text javascript

Text ecmascript

Application javascript

Application ecmascript

Text xml

Allow unsafe types

You can choose to allow unsafe types to be rendered, if required, by checking the Server Unsafe Artifacts

checkbox within the Frontend Settings in the KOTS Admin Console.

Figure 8. CircleCI Server v3.x Artifacts

Safe and unsafe content types | OPERATIONS GUIDE | 38

CircleCI Server v3.x Usage Data

CircleCI typically collects usage data, such as logs and other aggregated data, for the purpose of improving

our products and services. We never collect personally identifiable information or information that is

specific to your projects or accounts.

Current Data Collected

Currently, Server 3.0 does not include the data collection service. The service will be included in a future

release.

With any release, we will communicate what additional data will be collected.

Current Data Collected | OPERATIONS GUIDE | 39

Security

This document outlines security features built into CircleCI and related integrations.

Overview

Security is our top priority at CircleCI. We are proactive and we act on security issues immediately. Report

security issues to security@circleci.com with an encrypted message using our security team’s GPG key (ID:

0x4013DDA7, fingerprint: 3CD2 A48F 2071 61C0 B9B7 1AE2 6170 15B8 4013 DDA7).

Encryption

CircleCI uses HTTPS or SSH for all networking in and out of our service, including from the browser to our

services application, from the services application to your builder fleet, from our builder fleet to your source

control system, and all other points of communication. None of your code or data travels to or from CircleCI

without being encrypted, unless you have code in your builds that does so at your discretion. Operators may

also choose to bypass our SSL configuration or not use TLS for communicating with underlying systems.

The nature of CircleCI is that our software has access to your code and whatever data that code interacts

with. All jobs on CircleCI run in a sandbox (specifically, a Docker container or an ephemeral VM) that stands

alone from all other builds and is not accessible from the Internet or from your own network. The build

agent pulls code via git over SSH. Your particular test suite or job configurations may call out to external

services or integration points within your network, and the response from such calls will be pulled into your

jobs and used by your code at your discretion. After a job is complete, the container that ran the job is

destroyed and rebuilt. All environment variables are encrypted using Hashicorp Vault. Environment variables

are encrypted using AES256-GCM96 and are unavailable to CircleCI employees.

Sandboxing

With CircleCI, you control the resources allocated to run the builds of your code. This will be done through

instances of our builder boxes that set up the containers in which your builds will run. By their nature, build

containers will pull down source code and run whatever test and deployment scripts are part of the

codebase or your configuration. The containers are sandboxed, each created and destroyed for one build

only (or one slice of a parallel build), and they are not available from outside themselves. The CircleCI service

provides the ability to SSH directly to a particular build container. When accessing a container this way, a

user will have complete access to any files or processes being run inside that build container. Only provide

CircleCI access to those also trusted with your source code.

Integrations

A few different external services and technology integration points touch CircleCI. The following list

explains those integration points.

• Web Sockets We use Pusher client libraries for WebSocket communication between the server and the

browser. However, for installs we use an internal server called Slanger, so Pusher servers have no access

to your instance of CircleCI nor your source control system. This is how we, for instance, update the

builds list dynamically, or show the output of a build line-by-line as it occurs. We send build status and

lines of your build output through the web socket server (which unless you have configured your

installation to run without SSL is done using the same certs over SSL), so it is encrypted in transit.

Overview | OPERATIONS GUIDE | 40

mailto:security@circleci.com
https://www.vaultproject.io/
https://pusher.com/

• Replicated We use Replicated to manage the installation wizard, licensing keys, system audit logs,

software updates, and other maintenance and systems tasks for CircleCI. Your instance of CircleCI

communicates with Replicated servers to send license key information and version information to check

for updates. Replicated does not have access to your data or other systems, and we do not send any of

your data to Replicated.

• Source Control Systems To use CircleCI you will set up a direct connection with your instance of

GitHub Enterprise or GitHub.com. When you set up CircleCI, you authorize the system to check out

your private repositories. You may revoke this permission at any time through your GitHub application

settings page and by removing Circle’s Deploy Keys and Service Hooks from your repositories' Admin

pages. While CircleCI allows you to selectively build your projects, GitHub’s permissions model is "all or

nothing" — CircleCI gets permission to access all of a user’s repositories or none of them. Your instance

of CircleCI will have access to anything hosted in those git repositories and will create webhooks for a

variety of events (for example, when code is pushed, when a user is added, etc.) that will call back to

CircleCI, triggering one or more git commands that will pull down code to your build fleet.

• Dependency and Source Caches Most CircleCI customers use S3 or equivalent cloud-based storage

inside their private cloud infrastructure (Amazon VPC, etc) to store their dependency and source caches.

These storage servers are subject to the normal security parameters of anything stored on such services,

meaning in most cases our customers prevent any outside access.

• Artifacts It is common to use S3 or similar hosted storage for artifacts. Assuming these resources are

secured per your normal policies, they are as safe from any outside intrusion as any other data you store

there.

Audit Logs

The Audit Log feature is only available for CircleCI installed on your servers or private cloud.

CircleCI logs important events in the system for audit and forensic analysis purposes. Audit logs are separate

from system logs that track performance and network metrics.

Complete Audit logs may be downloaded as a CSV file from the Audit Log page within the Admin section of

the application. Audit log fields with nested data contain JSON blobs. Please note the audit log download

can take a very long time to start; we recommend clicking the Download button once and leaving it to run.

Note: In some situations, the internal machinery may generate duplicate events in the audit logs. The id field

of the downloaded logs is unique per event and can be used to identify duplicate entries.

Audit Log Events

The following are the system events that are logged. See action in the Field section below for the definition

and format.

• context.create

• context.delete

• context.env_var.delete

• context.env_var.store

• context.secrets.accessed

• project.env_var.create

Audit Logs | OPERATIONS GUIDE | 41

http://www.replicated.com/

• project.env_var.delete

• project.settings.update

• user.create

• user.logged_in

• user.logged_out

• workflow.job.approve

• workflow.job.finish

• workflow.job.scheduled

• workflow.job.start

Audit Log Fields

• action: The action taken that created the event. The format is ASCII lowercase words separated by dots,

with the entity acted upon first and the action taken last. In some cases entities are nested, for example,

workflow.job.start.

• actor: The actor who performed this event. In most cases, this will be a CircleCI user. This data is a JSON

blob that will always contain id and and type and will likely contain name.

• target: The entity instance acted upon for this event, for example, a project, an org, an account, or a

build. This data is a JSON blob that will always contain id and and type and will likely contain name.

• payload: A JSON blob of action-specific information. The schema of the payload is expected to be

consistent for all events with the same action and version.

• occurred_at: When the event occurred in UTC expressed in ISO-8601 format with up to nine digits of

fractional precision, for example '2017-12-21T13:50:54.474Z'.

• metadata: A set of key/value pairs that can be attached to any event. All keys and values are strings.

This can be used to add additional information to certain types of events.

• id: A UUID that uniquely identifies this event. This is intended to allow consumers of events to identify

duplicate deliveries.

• version: Version of the event schema. Currently the value will always be 1. Later versions may have

different values to accommodate schema changes.

• scope: If the target is owned by an Account in the CircleCI domain model, the account field should be

filled in with the Account name and ID. This data is a JSON blob that will always contain id and type and

will likely contain name.

• success: A flag to indicate if the action was successful.

• request: If this event was triggered by an external request, this data will be populated and may be used

to connect events that originate from the same external request. The format is a JSON blob containing

id (the unique ID assigned to this request by CircleCI).

Checklist To Using CircleCI Securely as a Customer

If you are getting started with CircleCI, there are some points you can ask your team to consider for security

best practices as users of CircleCI:

Checklist To Using CircleCI Securely as a Customer | OPERATIONS GUIDE | 42

• Minimize the number of secrets (private keys / environment variables) your build needs and rotate

secrets regularly.

◦ It is important to rotate secrets regularly in your organization, especially as team members come and

go.

◦ Rotating secrets regularly means your secrets are only active for a certain amount of time, helping to

reduce possible risks if keys are compromised.

◦ Ensure the secrets you do use are of limited scope, with only enough permissions for the purposes

of your build. Consider carefully adjudicating the role and permission systems of other platforms you

use outside of CircleCI; for example, when using something such as IAM permissions on AWS, or

GitHub’s Machine User feature.

• Sometimes user misuse of certain tools might accidentally print secrets to stdout which will appear in

your logs. Please be aware of:

◦ running env or printenv which will print all your environment variables to stdout.

◦ literally printing secrets in your codebase or in your shell with echo.

◦ programs or debugging tools that print secrets on error.

• Consult your VCS provider’s permissions for your organization (if you are in an organization) and try to

follow the Principle of Least Privilege.

• Use Restricted Contexts with teams to share environment variables with a select security group. Read

through the contexts document to learn more.

• Ensure you audit who has access to SSH keys in your organization.

• Ensure that your team is using Two-Factor Authentication (2FA) with your VCS (Github 2FA, Bitbucket).

If a user’s GitHub or Bitbucket account is compromised a nefarious actor could push code or potentially

steal secrets.

• If your project is open source and public, please make note of whether you want to share your

environment variables. On CircleCI, you can change a project’s settings to control whether your

environment variables can pass on to forked versions of your repo. This is not enabled by default. You can

read more about these settings and open source security in our Open Source Projects Document.

Checklist To Using CircleCI Securely as a Customer | OPERATIONS GUIDE | 43

https://developer.github.com/v3/guides/managing-deploy-keys/#machine-users
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://circleci.com/docs/2.0/contexts/#restricting-a-context
https://help.github.com/en/articles/securing-your-account-with-two-factor-authentication-2fa
https://confluence.atlassian.com/bitbucket/two-step-verification-777023203.html
https://circleci.com/docs/2.0/oss/#security

CircleCI Server v3.x Application Lifecycle

CircleCI is committed to supporting four minor versions of the software. This means a minor version will

receive patches for up to 12 months. We use semantic versioning to help identify releases and their impact

on your installation.

Semantic Versioning

Given a version number, MAJOR.MINOR.PATCH increment, use the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the

MAJOR.MINOR.PATCH format.

Release Schedule

We release monthly patch fixes for bugs and security concerns. We will have quarterly new feature releases.

All releases will be posted to the change log. To stay up to date with the most recent releases, please

subscribe to the change log.

Semantic Versioning | OPERATIONS GUIDE | 44

https://circleci.com/server/changelog/

CircleCI Server v3.x Troubleshooting and Support

This document describes an initial set of troubleshooting steps to take if you are experiencing problems with

your CircleCI Server v3.x installation. If your issue is not addressed below, you can generate a support

bundle or contact your CircleCI account team.

Start KOTS Admin Console

To restart the KOTS Admin Console, run the following command:

kubectl kots admin-console -n <YOUR_CIRCLECI_NAMESPACE>

Open your browser and access http://localhost:8800 to see the Admin Console.

Generate Support Bundle

A support bundle is used by CircleCI engineers to diagnose and fix any issues you are experiencing. They are

typically requested when you open a ticket.

To download a support bundle for CircleCI support, select the Troubleshoot tab from the Admin Console

menu bar, and then click Analyze CircleCI Server.

Managing Pods

Verify Pod Readiness and Status

Check the READY column as well as STATUS. Even if the STATUS is Running, pods are not

ready to serve user requests. Some pods may take some time to become ready.

kubectl get pods -n <namespace>
NAME READY STATUS RESTARTS AGE
api-service-5c8f557548-zjbsj 1/1 Running 0 6d20h
audit-log-service-77c478f9d5-5dfzv 1/1 Running 0 6d20h
builds-service-v1-5f8568c7f5-62h8n 1/1 Running 0 6d20h
circleci-mongodb-0 1/1 Running 0 6d20h
circleci-nomad-0 1/1 Running 6 6d20h
…

To show only pods with a status besides Running, you can use the --field-selector option.

Start KOTS Admin Console | OPERATIONS GUIDE | 45

http://localhost:8800

kubectl get pods --field-selector status.phase!=Running -n <namespace>
NAME READY STATUS RESTARTS AGE
nomad-server 0/1 Error 0 5d22h

Verify Pod Settings and Status

To show detailed settings and status of pods, use the following command:

kubectl describe pods <pod-name> -n <namespace>

Get Pod Logs

To show logs of pods, use the following command:

kubectl logs <pod-name> -n <namespace>

Restart Pods

To restart specific pods, the easiest way is remove the pod. Kubernetes automatically recreates the pod:

kubectl delete pod <pod-name> -n <name-space> --now

Debug Queuing Builds

For troubleshooting information on debugging queued builds, see the Server 2.x troubleshooting Guide.

Debug Queuing Builds | OPERATIONS GUIDE | 46

https://circleci.com/docs/2.0/troubleshooting/?section=server-administration#debug-queuing-builds

CircleCI Server v3.x Backup and Restore

Overview

Backup and restore is available for server v3.1.0 and up.

While operating and administering CircleCI server, you will need to consider how to maintain backups and

recover your installation, should there be a need to migrate it to another cluster or recover from a critical

event.

This document outlines recommendations for how to back up and restore your CircleCI server instance data

and state.

CircleCI server is administered via KOTS, which uses Velero for backup and restore. The benefit of this

approach is that it not only restores your application’s data, but it also restores the state of the Kubernetes

cluster and its resources at the time of the backup. This means you can also restore Admin Console

configurations and customizations you made to your cluster.

Backup and restore of the CircleCI services is dependent on Velero. If your cluster is lost,

you will not be able to restore CircleCI until you have successfully started Velero in the

cluster. From there you can recover the CircleCI services.

The setup

Backups of CircleCI server can be created through KOTS. However, to enable backup support you need to

install and configure Velero on your cluster.

The following sections outline the steps needed to install Velero on your cluster.

Prerequisites

• Download and install the Velero CLI for your environment.

AWS prerequisites

• AWS CLI is installed.

GCP prerequisites

• gcloud and gsutil are installed. You can set them up by installing Google Cloud SDK, which includes

both, by referring to the documentation.

For more information, see Velero’s supported providers documentation.

Below, you will find instructions for creating a server 3.x backup on AWS and GCP.

S3-compatible storage prerequisites

• MinIO CLI is installed and configured for your storage provider.

Overview | OPERATIONS GUIDE | 47

https://kots.io/
https://velero.io/
https://kots.io/
https://velero.io/
https://velero.io/docs/v1.6/basic-install/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://cloud.google.com/sdk/docs/
https://velero.io/docs/v1.6/supported-providers/
https://docs.min.io/docs/minio-client-quickstart-guide.html

Server 3.x backups on AWS

The following steps assume AWS as your provider and that you have met the prerequisites listed above.

These instructions were sourced from the Velero documentation here.

Step 1 - Create an AWS S3 bucket

BUCKET=<YOUR_BUCKET>
REGION=<YOUR_REGION>
aws s3api create-bucket \
 --bucket $BUCKET \
 --region $REGION \
 --create-bucket-configuration LocationConstraint=$REGION

us-east-1 does not support a LocationConstraint. If your region is us-east-1, omit the

bucket configuration.

Step 2 - Setup permissions for Velero

• Create an IAM user

aws iam create-user --user-name velero

• Attach policies to give user velero the necessary permissions:

cat > velero-policy.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVolumes",
 "ec2:DescribeSnapshots",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:CreateSnapshot",
 "ec2:DeleteSnapshot"
],
 "Resource": "*"

Server 3.x backups on AWS | OPERATIONS GUIDE | 48

https://github.com/vmware-tanzu/velero-plugin-for-aws#setup
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html#API_CreateBucket_RequestBody

 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:PutObject",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::${BUCKET}/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::${BUCKET}"
]
 }
]
}
EOF

aws iam put-user-policy \
 --user-name velero \
 --policy-name velero \
 --policy-document file://velero-policy.json

• Create an access key for user velero:

aws iam create-access-key --user-name velero

The result should look like this:

Server 3.x backups on AWS | OPERATIONS GUIDE | 49

{
 "AccessKey": {
 "UserName": "velero",
 "Status": "Active",
 "CreateDate": "2017-07-31T22:24:41.576Z",
 "SecretAccessKey": <AWS_SECRET_ACCESS_KEY>,
 "AccessKeyId": <AWS_ACCESS_KEY_ID>
 }
}

• Create a Velero-specific credentials file (for example, ./credentials-velero) in your local directory, with

the following contents:

[default]
aws_access_key_id=<AWS_ACCESS_KEY_ID>
aws_secret_access_key=<AWS_SECRET_ACCESS_KEY>

where the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY placeholders are values returned from the create-

access-key request in the previous step.

Step 3 - Install and start Velero

• Run the following velero install command. This creates a namespace called velero and installs all the

necessary resources to run Velero. Make sure that you pass the correct file name containing the AWS

credentials that you have created in Step 2.

KOTS backups require restic to operate. When installing Velero, ensure that you have the

--use-restic flag set, as shown below:

velero install \
 --provider aws \
 --plugins velero/velero-plugin-for-aws:v1.2.0 \
 --bucket $BUCKET \
 --backup-location-config region=$REGION \
 --snapshot-location-config region=$REGION \
 --secret-file ./credentials-velero \
 --use-restic \
 --wait

• Once Velero is installed on your cluster, check the new velero namespace. You should have a Velero

deployment and a restic daemonset, for example:

Server 3.x backups on AWS | OPERATIONS GUIDE | 50

https://restic.net/

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Running 0 2m
restic-94ptv 1/1 Running 0 2m
restic-ch6m9 1/1 Running 0 2m
restic-mknws 1/1 Running 0 2m
velero-68788b675c-dm2s7 1/1 Running 0 2m

As restic is a daemonset, there should be one pod for each node in your Kubernetes cluster.

Server 3.x backups on GCP

The following steps are specific for Google Cloud Platform and it is assumed you have met the prerequisites.

These instructions were sourced from the documentation for the Velero GCP plugin here.

Step 1 - Create a GCP bucket

To reduce the risk of typos, set some of the parameters as shell variables. If you are unable to complete all

the steps in the same session, do not forget to reset variables as necessary before proceeding. In the step

below, for example, you will define a variable for your bucket name. Replace the <YOUR_BUCKET> placeholder

with the name of the bucket you want to create for your backups.

BUCKET=<YOUR_BUCKET>

gsutil mb gs://$BUCKET/

Step 2 - Setup permissions for Velero

If your server installation runs within a GKE cluster, ensure that your current IAM user is a cluster admin for

this cluster, as RBAC objects need to be created. More information can be found in the GKE documentation.

1. First, set a shell variable for your project ID. To do so, first make sure that your gcloud CLI points to the

correct project by looking at the current configuration:

gcloud config list

2. If the project is correct, set the variable as follows:

PROJECT_ID=$(gcloud config get-value project)

3. Create a service account:

Server 3.x backups on GCP | OPERATIONS GUIDE | 51

https://github.com/vmware-tanzu/velero-plugin-for-gcp#setup
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control#iam-rolebinding-bootstrap

gcloud iam service-accounts create velero \
 --display-name "Velero service account"

If you run several clusters with Velero, you might want to consider using a more

specific name for the Service Account besides velero, as suggested in the example

above.

4. You can check if the service account has been created successfully by running the following command:

gcloud iam service-accounts list

5. Next, store the email address for the Service Account in a variable:

SERVICE_ACCOUNT_EMAIL=$(gcloud iam service-accounts list \
 --filter="displayName:Velero service account" \
 --format 'value(email)')

Modify the command as needed to match the display name you have chosen for your Service Account.

6. Grant the necessary permissions to the Service Account:

Server 3.x backups on GCP | OPERATIONS GUIDE | 52

ROLE_PERMISSIONS=(
 compute.disks.get
 compute.disks.create
 compute.disks.createSnapshot
 compute.snapshots.get
 compute.snapshots.create
 compute.snapshots.useReadOnly
 compute.snapshots.delete
 compute.zones.get
)

gcloud iam roles create velero.server \
 --project $PROJECT_ID \
 --title "Velero Server" \
 --permissions "$(IFS=","; echo "${ROLE_PERMISSIONS[*]}")"

gcloud projects add-iam-policy-binding $PROJECT_ID \
 --member serviceAccount:$SERVICE_ACCOUNT_EMAIL \
 --role projects/$PROJECT_ID/roles/velero.server

gsutil iam ch serviceAccount:$SERVICE_ACCOUNT_EMAIL:objectAdmin gs://${BUCKET}

Now, you need to ensure that Velero can use this Service Account.

Option 1: JSON key file

You can simply pass a JSON credentials file to Velero to authorize it to perform actions as the Service

Account. To do this, you first need to create a key:

gcloud iam service-accounts keys create credentials-velero \
 --iam-account $SERVICE_ACCOUNT_EMAIL

After running this command, you should see a file named credentials-velero in your local working

directory.

Option 2: Workload Identities

If you are already using Workload Identities in your cluster, you can bind the GCP Service Account you just

created to Velero’s Kubernetes service account. In this case, the GCP Service Account needs the

iam.serviceAccounts.signBlob role in addition to the permissions already specified above.

Step 3 - Install and start Velero

• Run one of the following velero install commands, depending on how you authorized the service

account. This creates a namespace called velero and installs all the necessary resources to run Velero.

Server 3.x backups on GCP | OPERATIONS GUIDE | 53

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

KOTS backups require restic to operate. When installing Velero, ensure that you have the

--use-restic flag set.

If using a JSON key file

velero install \
 --provider gcp \
 --plugins velero/velero-plugin-for-gcp:v1.2.0 \
 --bucket $BUCKET \
 --secret-file ./credentials-velero \
 --use-restic \
 --wait

If using Workload Identities

velero install \
 --provider gcp \
 --plugins velero/velero-plugin-for-gcp:v1.2.0 \
 --bucket $BUCKET \
 --no-secret \
 --sa-annotations iam.gke.io/gcp-service-account=$SERVICE_ACCOUNT_EMAIL \
 --backup-location-config serviceAccount=$SERVICE_ACCOUNT_EMAIL \
 --use-restic \
 --wait

For more options on customizing your installation, refer to the Velero documentation.

• Once Velero is installed on your cluster, check the new velero namespace. You should have a Velero

deployment and a restic daemonset, for example:

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Running 0 2m
restic-94ptv 1/1 Running 0 2m
restic-ch6m9 1/1 Running 0 2m
restic-mknws 1/1 Running 0 2m
velero-68788b675c-dm2s7 1/1 Running 0 2m

As restic is a daemonset, there should be one pod for each node in your Kubernetes cluster.

Server 3.x backups on GCP | OPERATIONS GUIDE | 54

https://restic.net/
https://github.com/vmware-tanzu/velero-plugin-for-gcp#install-and-start-velero

Server 3.x backups with S3-compatible storage

The following steps assume you are using S3-compatible object storage, but not necessarily AWS S3, for

your backups. It is also assumed you have met the prerequisites.

These instructions were sourced from the Velero documentation here.

Step 1 - Configure mc client

To start, configure mc to connect to your storage provider:

Alias can be any name as long as you use the same value in subsequent commands

export ALIAS=my-provider

mc alias set $ALIAS <YOUR_MINIO_ENDPOINT> <YOUR_MINIO_ACCESS_KEY_ID> <YOUR_MINIO_SECRET_ACCESS_KEY>

You can verify your client is correctly configured by running mc ls my-provider and you should see the

buckets in your provider enumerated in the output.

Step 2 - Create a bucket

Create a bucket for your backups. It is important that a new bucket is used, as Velero cannot use an existing

bucket that already contains other content.

mc mb ${ALIAS}/<YOUR_BUCKET>

Set 3 - Create a user and policy

Next, create a user and policy for Velero to access your bucket.

In the following snippet <YOUR_MINIO_ACCESS_KEY_ID> and

<YOUR_MINIO_SECRET_ACCESS_KEY> refer to the credentials used by Velero to access MinIO.

Server 3.x backups with S3-compatible storage | OPERATIONS GUIDE | 55

https://velero.io/docs/v1.6/contributions/minio/
https://docs.min.io/minio/baremetal/reference/minio-mc.html

Create user
mc admin user add $ALIAS <YOUR_MINIO_ACCESS_KEY_ID> <YOUR_MINIO_SECRET_ACCESS_KEY>

Create policy
cat > velero-policy.json << EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:*"
],
 "Resource": [
 "arn:aws:s3:::<YOUR_BUCKET>",
 "arn:aws:s3:::<YOUR_BUCKET>/*"
]
 }
]
}
EOF

mc admin policy add $ALIAS velero-policy velero-policy.json

Bind user to policy
mc admin policy set $ALIAS velero-policy user=<YOUR_VELERO_ACCESS_KEY_ID>

Finally, add your new user’s credentials to a file (./credentials-velero in this example) with the following

contents:

[default]
aws_access_key_id=<YOUR_VELERO_ACCESS_KEY_ID>
aws_secret_access_key=<YOUR_VELERO_SECRET_ACCESS_KEY>

Step 4 - Install and start Velero

Run the following velero install command. This creates a namespace called velero and installs all the

necessary resources to run Velero.

KOTS backups require restic to operate. When installing Velero, ensure that you have the

--use-restic flag set, as shown below:

Server 3.x backups with S3-compatible storage | OPERATIONS GUIDE | 56

https://restic.net/

velero install --provider aws \
 --plugins velero/velero-plugin-for-aws:v1.2.0 \
 --bucket <YOUR_BUCKET> \
 --secret-file ./credentials-velero \
 --use-volume-snapshots=false \
 --use-restic \
 --backup-location-config region=minio,s3ForcePathStyle="true",s3Url=<YOUR_ENDPOINT> \
 --wait

Once Velero is installed on your cluster, check the new velero namespace. You should have a Velero

deployment and a restic daemonset, for example:

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Running 0 2m
restic-94ptv 1/1 Running 0 2m
restic-ch6m9 1/1 Running 0 2m
restic-mknws 1/1 Running 0 2m
velero-68788b675c-dm2s7 1/1 Running 0 2m

As restic is a daemonset, there should be one pod for each node in your Kubernetes cluster.

Creating backups

Now that Velero is installed on your cluster, you should see the Snapshots option in the navbar of the

management console.

If you see this option, you are ready to create your first backup. If you do not see this option, please refer to

the troubleshooting section.

Option 1 - Create a backup with KOTS CLI

To create the backup, run the following command:

kubectl kots backup --namespace <your namespace>

Creating backups | OPERATIONS GUIDE | 57

Option 2 - Create a backup with KOTS Admin Console

Select Snapshots from the navbar. The default selection should be Full Snapshots, which is recommended.

Click the Start a snapshot button.

Restoring backups

Option 1 - Restore a backup from a snapshot

To restore from a backup stored in your S3-compatible storage, you need to ensure Velero is installed on

your Kubernetes cluster and that Velero has access to the storage bucket containing the backups. When

using EKS, restoring CircleCI server requires that an instance of CircleCI server is installed beforehand.

When using GKE or other platforms, a cluster with just Velero installed may work.

If this is a new cluster or if you need to reinstall Velero, the installation should be done

with the same credentials generated above.

Option 2 - Restore a backup using the KOTS CLI

To restore a backup using the KOTS CLI, run the following command to get a list of backups:

kubectl kots get backups

Using a backup name from the previous command, run the following to start the restore process:

Restoring backups | OPERATIONS GUIDE | 58

kubectl kots restore --from-backup <backup-instance-id>

Option 3 - Restore a backup using the KOTS Admin Console

As with backups, navigate to Snapshots in the KOTS Admin Console. Now you should see a list of all your

backups, each with a restore icon. Choose the backup you wish to use and select restore.

The restore will create new load balancers for CircleCI’s services. Consequently, you will

need to either update your DNS records or the hostname/IP configurations in KOTS

Admin Console. You may also need to consider updating the nomad server endpoint

provided to your Nomad clients.

If you are using pre-existing Nomad clients, you need to restart them before they will

connect to the nomad-server cluster.

It should take approximately 10-15 mins for CircleCI server to be restored and operational.

Optional - Scheduling backups with KOTS

To schedule regular backups, select Snapshots, and then Settings & Schedule from the KOTS Admin

Console.

And here you can find configurations related to your snapshots, including scheduling.

Optional - Scheduling backups with KOTS | OPERATIONS GUIDE | 59

Troubleshooting Backups and Restoration

Snapshots are not available in KOTS Admin Console

If your KOTS Admin Console does not display the snapshot option, you may try the following:

• Confirm that your version of KOTS supports snapshots. At this time, we recommend v1.40.0 or above:

$ kubectl kots version
Replicated KOTS 1.40.0

• Check that Velero is deployed and running correctly. You may check the Velero logs with the following

command:

$ kubectl logs deployment/velero --namespace velero

You may need to reinstall Velero afterwards.

• Confirm that snapshots are available on your license. You may contact our Customer Support Team for

confirmation.

Errors occur during backup or restore process

If you experience an error during backup or restore processes, the first place to look would be the Velero

logs. Using the command above, you may find 4XX errors, which would likely be caused by issues with your

storage bucket access.

Troubleshooting Backups and Restoration | OPERATIONS GUIDE | 60

• Confirm that your bucket exists and is in the region you expect.

• Confirm that the credentials provided to Velero can be used to access the bucket.

• You may need to run the command to install Velero again, this time with updated bucket information.

You may also check the status of pods in the velero namespace:

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Pending 0 10m
restic-94ptv 1/1 Running 0 10m
restic-ch6m9 1/1 Pending 0 10m
restic-mknws 1/1 Running 0 10m
velero-68788b675c-dm2s7 1/1 Running 0 10m

In the above example, some restic pods are pending, which means they are waiting for a node to have

available CPU or memory resources. In this case, you may need to scale your nodes to accommodate restic.

Troubleshooting Backups and Restoration | OPERATIONS GUIDE | 61

	OPERATIONS GUIDE: A guide for administrators of CircleCI Server v3.4.1 on AWS or GCP
	CircleCI Server v3.x Operations Overview
	Execution Environment
	Nomad Clients
	GitHub

	CircleCI Server v3.x Metrics and Monitoring
	Metrics Collection
	Scope
	Prometheus
	KOTS Admin - Metrics Graphs
	Telegraf
	Use Telegraf to forward metrics to Datadog

	Introduction to Nomad Cluster Operation
	Basic Terminology and Architecture
	Basic operations
	Checking the jobs status
	Checking the cluster status
	Checking logs
	Shutting down a Nomad client
	Scaling down the client cluster

	CircleCI Server v3.x Configuring a Proxy
	Installation and configuration
	Installing behind a proxy
	Configuring your proxy

	Known limitations

	CircleCI Server v3.x User Accounts
	Suspending Accounts
	New Accounts
	Active Accounts
	Inactive Accounts

	Reactivating Accounts
	New Accounts
	Previously Active Accounts

	Limiting Registration by GitHub Organization

	CircleCI Server v3.x Managing Orbs
	Managing Orbs
	List available orbs
	Import a public orb
	Fetch a public orb’s updates
	Using orbs behind a proxy

	CircleCI Server v3.x VM Service
	VM service settings
	VM provider
	AWS EC2
	Authentication
	Default AWS AMI list

	Google Cloud Platform

	CircleCI Server v3.x Configuring External Services
	PostgreSQL
	Best Practices for your PostgreSQL
	Backing Up PostgreSQL

	MongoDB
	Vault

	CircleCI Server v3.x Internal Database Volume Expansion
	Overview
	Resizing persistent volume claims
	Step 0 - Confirm current volume size
	Step 1 - Confirm volume expansion is allowed
	Step 2 - Delete the database’s stateful set
	Step 3 - Update the size of the database’s PVC
	Step 4 - Update KOTS Admin Console with the new PVC size
	Step 5 - Validate new volume size

	Troubleshooting

	CircleCI Server v3.x Load Balancers
	Make the frontend load balancer private

	CircleCI Server v3.x Authentication
	Using Docker Authenticated Pulls
	Docker executor
	Machine executor (with Docker orb)
	Machine executor (with Docker CLI)
	AWS ECR

	CircleCI Server v3.x build artifacts
	Safe and unsafe content types
	Allow unsafe types

	CircleCI Server v3.x Usage Data
	Current Data Collected

	Security
	Overview
	Encryption
	Sandboxing
	Integrations
	Audit Logs
	Audit Log Events
	Audit Log Fields

	Checklist To Using CircleCI Securely as a Customer

	CircleCI Server v3.x Application Lifecycle
	Semantic Versioning
	Release Schedule

	CircleCI Server v3.x Troubleshooting and Support
	Start KOTS Admin Console
	Generate Support Bundle
	Managing Pods
	Verify Pod Readiness and Status
	Verify Pod Settings and Status
	Get Pod Logs
	Restart Pods

	Debug Queuing Builds

	CircleCI Server v3.x Backup and Restore
	Overview
	The setup
	Prerequisites
	AWS prerequisites
	GCP prerequisites
	S3-compatible storage prerequisites

	Server 3.x backups on AWS
	Step 1 - Create an AWS S3 bucket
	Step 2 - Setup permissions for Velero
	Step 3 - Install and start Velero

	Server 3.x backups on GCP
	Step 1 - Create a GCP bucket
	Step 2 - Setup permissions for Velero
	Option 1: JSON key file
	Option 2: Workload Identities

	Step 3 - Install and start Velero
	If using a JSON key file
	If using Workload Identities

	Server 3.x backups with S3-compatible storage
	Step 1 - Configure mc client
	Step 2 - Create a bucket
	Set 3 - Create a user and policy
	Step 4 - Install and start Velero

	Creating backups
	Option 1 - Create a backup with KOTS CLI
	Option 2 - Create a backup with KOTS Admin Console

	Restoring backups
	Option 1 - Restore a backup from a snapshot
	Option 2 - Restore a backup using the KOTS CLI
	Option 3 - Restore a backup using the KOTS Admin Console

	Optional - Scheduling backups with KOTS
	Troubleshooting Backups and Restoration
	Snapshots are not available in KOTS Admin Console
	Errors occur during backup or restore process

